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Abstract—Source code comments contain key information
about the underlying software system. Many redocumentation
approaches, however, cannot exploit this valuable source of
information. This is mainly due to the fact that not all comments
have the same goals and target audience and can therefore only
be used selectively for redocumentation. Performing a required
classification manually, e.g. in the form of heuristic rules, is
usually time-consuming and error-prone and strongly dependent
on programming languages and guidelines of concrete software
systems. By leveraging machine learning, it should be possible
to classify comments and thus transfer valuable information
from the source code into documentation with less effort but the
same quality. We applied different machine learning techniques
to a COBOL legacy system and compared the results with
industry-strength heuristic classification. As a result, we found
that machine learning outperforms the heuristics in number of
errors and less effort.

Index Terms—software redocumentation, legacy system, com-
ment classification pipeline, heuristic rules, machine learning,
NLP, CNNs

I. INTRODUCTION

Software redocumentation with the intent to recover lost or
non-existing documentation is performed for various reasons.
Redocumentation may help improving software quality during
maintenance [1] or supports migration activities [2]. In the
banking domain, as in our case, redocumentation projects are
also initiated because of requirements of national financial su-
pervisory authorities [3]. In any case, redocumentation usually
concerns large legacy systems where manual redocumentation
is not economically feasible.

As the information provided in source code (i.e. code
statements and comments) represents a valuable resource for
maintainers involved in the management of the evolution
of a given software system, existing redocumentation tools
(e.g. [2][4][5]) produce acceptable results. In particular, com-
ments are extremely important as they are used to convey
the main intent behind design decisions, along with some
implementation details [6]. However, most existing approaches

neglect source code comments or require intensive annotation
in source code to control extraction (e.g. [5]).

To avoid source code annotation but use the information
contained in source code comments, we have developed
heuristic rules. In an ongoing redocumentation project, we use
these heuristics to classify source code comments and use the
classification to control whether to extract the content of a
source code comment or not. The definition of heuristics is
time consuming and the result depends on the underlying pro-
gramming language and even on the employed programming
conventions. To mitigate these problems, we are interested
in whether we can replace heuristics by leveraging machine
learning for comment classification. Machine learning (ML)
methods were already applied for comment classification of
C++, Java, and Python software systems with promising results
[7][8][9]. We revisit the problem with the aim to answer the
following research questions for comment classification in the
context of redocumentation of a COBOL legacy software:

1) RQ1: How effective are ML classifiers for automatically
classifying source code comments?

2) RQ2: To what extend can natural language processing
(NLP) features and advanced text cleaning techniques
improve comment classification?

3) RQ3: Which approach (heuristics, ML or deep learning)
is the most suitable one in practice?

The paper is structured as follows: In Section II, we outline
the industrial context for our research. In Section III, we
describe the comment classification heuristic currently used in
the redocumentation project as well as investigated machine
learning models. In Section IV, we summarize and discuss
results. Finally, Section V concludes our work.

II. INDUSTRIAL SETTING

Our redocumentation approach was developed at a financial
service provider in the automotive industry. This company
developed software systems in the 1980s that are still in
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Fig. 1. Extract from generated documentation (text extracted from source
code comments is selected).

operation today. These software systems are financial systems
in the sense of banking supervision. The operator is therefore
obliged to provide national financial supervisors with up-to-
date documentation on the software systems.

System under Study. The basis for our research is a
COBOL/IMS/DB2 legacy system for leasing with several
million lines of code. The legacy system consists of programs
for batch processing and online transaction processing (OLTP).
Batch programs are executed daily, monthly, or if required.
OLTP uses mainframe terminals with screens for user interac-
tion. Online transactions can be started from the main screen
of the legacy software, while a single transaction has a main
screen and multiple screens for step-by-step data processing.

Documentation Standard. The organization uses a quality
guideline for documentation that meets the requirements of the
given national regulative [3]. This guideline describes how to
create and maintain system documentation at different levels
including (i) user documentation and training material, (ii)
functional documentation that contains business rules, and
(iii) technical documentation including COBOL subsystems,
database tables, screen masks, and batch jobs.

Project Goal. Knowing that it is neither possible nor
desirable to automate all documentation, the goal of the redoc-
umentation project was to automatically generate parts of the
functional documentation and all the technical documentation.
High level documentation was created and updated manually,
based on interviews with domain experts.

The need for comment classification comes from the gener-
ation of business rules that are part of the functional documen-
tation. Fig. 1 shows an excerpt of business rules which contain
the computation of domain concepts, e.g. BASESV , together
with conditions under which a computation is applied. Busi-
ness rules are extracted from source code statements by means
of static code analysis [10] and symbolic execution [11],
implemented in our tool RbG [5]. To further improve the
readability, the documentation is enriched by texts extracted
from source code comments.

152430* WRITE DATA TO DB2-FILE 152440** MOVE LENGTH OF

152450* ONE MONTH WAS TOO MUCH CALCULATED 152460* DAYS

152470***** DB2-ERRORINFORMATION 152480* -DB2INFO PASS

152500* EVALUATE IN1AX-BOOK-ART 

 IGNORE

 TEXT

 TEXT

 IGNORE

Fig. 2. An example of classifying comments for software redocumentation.

III. COMMENT CLASSIFICATION APPROACHES

A. Problem Statement

Regardless of the different types of source code comments
and taxonomies, the problem of comment classification in the
industry project described above is formulated as a binary
classification problem: the comment is being integrated into
the documentation or not.

B. Heuristics

During the redocumentation project, the classification of
comments was described by rules. These rules were first
created by a manual analysis of a subset of COBOL programs
and then continuously adapted and refined during the project.
Given a text s of a single comment that spans over one or
more lines, we apply rules for inclusion and exclusion in the
following order:

1) Block (include): if a multi-line comment starts and ends
with the same 20 characters, we include the text s
between these two lines. Example:

**********************
* Krankenversicherung

**********************
2) Error number (include): in the OLTP source code, the

validation of user input was documented with error
numbers in comments in a systematic way. Example:

* F012 some text

3) Empty comment (exclude): if the text s is an empty
string, we ignore it.

4) Disabled code (exclude): We use black lists with single
tokens (e.g. SECTION.) and token pairs (e.g. MOVE,
TO) to avoid source code statements in the documenta-
tion.

5) Comment length (exclude): we exclude comments with
more than x lines to avoid typical header comments
including revision information.

6) Default (include): All comments that are not excluded
by rules 3–5 are included in the documentation.

C. Machine Learning

We then applied supervised machine learning (ML) [12]
for the automatic classification approach. We trained and
compared traditional ML classifiers, such as naive Bayes,
support vector machines, and random forests, as well as a deep,
feed-forward artificial neural network. The proposed comment
classification pipeline consists of three basic steps, including
different ways to improve the performance of the classifiers.
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1) Data Preparation: We extracted >700000 source code
comments from the COBOL legacy system.

Dataset preparation. To prepare the corpus, we first
performed a random sampling over all documents, removed
duplicates, shuffled the data, and ensured a balanced dataset
regarding TEXT and IGNORE labels. For initial classification,
we used the heuristic rules to classify the sampled dataset (see
Fig. 2). We then selected a subset of 4010 documents (with
respect to confidence and margin of error) and inspected the
comments manually. Each source code comment was validated
by two professional programmers.

Pre-processing. The first step in pre-processing of com-
ments is (i) tokenization (by splitting text into words, ignoring
white spaces, etc.). We improved the performance of ML clas-
sifiers using text cleaning techniques, i.e., by (ii) removing
stop words and language-specific patterns (e.g., line numbers
and special characters in COBOL), (iii) splitting identifiers
based on camel case, and (iv) lowercasing the resulting terms
(object standardization). We also apply NLP techniques via
(v) word stemming (using the nltk package) to reduce high-
dimensional features (lexicon normalization).

Splitting the dataset. For ML classifiers, the dataset is split
into 60% training data, 15% validation data, and 25% test data.
For deep learning (DL), the split of the dataset in training,
validation, and test sets is 56%, 24%, and 20% respectively.

2) Feature Engineering: Traditional ML classifiers require
text data to be described by a pre-defined set of features
(attributes) prior to employing a learning algorithm.

Creation of new features from text data. First, we used
three standard methods in text recognition to create a word
vector for each instance [13]: (i) Bag-of-words (count) vectors
count the occurrence of each word in each comment. (ii) Term
frequency-inverse document frequency (tf-idf) vectors represent
the weighted occurrence of frequent terms. (iii) More-than-
one-word (n-gram) vectors consider sequences of terms that
appear next to each other, e.g., ngram range=(1,3).

Flattening features (feature selection). Then, we reduced
the number of features by using thresholds to avoid overfitting,
e.g., setting the minimum number of documents a token needs
to appear in (e.g., min df=3) or the maximum number of
features (e.g., max features=2000).

Combining different feature vectors. Finally, we (i) com-
bine NLP features (considering information about the context,
e.g., comment length, number of nouns or verbs, etc.) with text
feature vectors, and (ii) use the heuristics to add a category-
specific feature according to our rules.

In Fig. 3, we visualize the distribution of all textual and
symbolic strings (data points) included in the final dataset.
The plot shows the positive instances on the x-axis and the
negative instances on the y-axis, positioned based on their
frequency. Since the data points represented as dots in the plot
form two clusters, we expected the automatic mining approach
to achieve accurate results.

3) Model Training: Jupyter Notebooks are used as frontend
for learning and presenting the different classifiers.
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Fig. 3. Distribution of data points in the sample dataset using interactive
scattertext plot (https://github.com/JasonKessler/scattertext).

Training of the classifiers. The Python sklearn package
(https://scikit-learn.org) provides a simple and fast approach
to train, validate, and test ML classifiers. We investigated
different classes of classifiers: (i) probabilistic classifiers, such
as naive Bayes (multinomial NB) and linear classifiers (logistic
regression (LR)), (ii) deterministic classifiers, such as support
vector machines (SVM), and (iii) decision tree algorithms,
such as bagging models (random forests (RF)) and boosting
models (XGB).

In addition, we trained a well-established Convolutional
Neuronal Network (CNN) architecture for text classification
(epochs=100, batch size=10) in Keras with the following
key components: (i) A (pre-trained GloVe) word embedding
employs a dense vector representation of words with a similar
meaning. (ii) Convolutional layers extract high-level features
from comments represented using the word embedding and
learn the correlations between nearby inputs. (iii) A fully
connected model (i.e., the classifier) interprets the extracted
features in terms of a predictive output. In total, the CNN
consists of 10 layers and 1597594 trainable parameters.

Parameter tuning to get a best fit model. We used grid
search with 5-fold cross-validation to try all possible combi-
nations of parameters to improve the classifiers’ performance.

4) Model Test: To evaluate the effectiveness of our classi-
fiers, we measured well-known metrics [14] for the quality of
binary classification results.

Evaluation metrics. We first determine precision and re-
call to oppose the fraction of relevant comments among the
retrieved ones to the fraction of the total amount of relevant
comments actually retrieved by the classifiers. Thereby, false
positives (FP) represent ’trash’ comments (i.e., comments that
are wrongly classified as TEXT (but in fact are IGNORE)),
and false negatives (FN) represent ’missing’ comments (i.e.,
comments that are wrongly classified as IGNORE (but are
in fact TEXT)). We then calculate the harmonic mean of
precision and recall, i.e. the f-measure, as well as the ROC
AUC and MMC (Matthews correlation coefficient), which are
more robust performance measures for binary classifiers. Since
there always is a trade-off between optimizing precision and
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TABLE I
EVALUATION OF DIFFERENT ML CLASSIFIERS.

prec rec f1 acc rocauc mcc
NB 0.9076 0.9095 0.9085 0.9133 0.9131 0.8261
LR 0.9748 0.9431 0.9587 0.9601 0.9598 0.9206
SVM 0.9937 0.8908 0.9394 0.9392 0.9422 0.8840
RF 0.9874 0.9363 0.9611 0.9621 0.9621 0.9255
XGB 0.9811 0.9415 0.9609 0.9621 0.9619 0.9249

optimizing recall, and in our case it is equally important to
limit the number of FP and to avoid FN, we finally calculated
the accuracy of our models as the primary metrics for the
evaluation.

Classification evaluation. We used stratified k-fold cross-
validation (with k=5) to evaluate the generalization perfor-
mance of the classifiers. Accordingly, five models are trained
and evaluated on randomly partitioned training/validation
datasets, ensuring same proportions between the two classes in
each fold. The accuracy values from the models were finally
averaged to provide a single prediction.

Threats to validity. The validity of our experiments may be
affected by different threads. Threats to sample validity relate
to the input dataset we used to train and test the classifiers.
Although we manually labeled 4010 documents, this may not
deliver sufficient knowledge to build general models. Threats
to external validity relate to the generalization of the results;
that is, the used feature engineering method and classifiers for
the COBOL system may not work for other systems.

IV. RESULTS

A. Comparing ML Classifiers and Features

To address RQ1 we compared traditional ML classifiers
using the above described text cleaning techniques, word vec-
tor representations, NLP features, and heuristic-based pattern
information. The test scores of all investigated classifiers are
shown in Tab. I. Precision and recall of the included comments
reach 91% to 99% respectively, whereas most classifiers show
better results for precision. The scores of f-measure (f1),
accuracy, and ROC AUC are very close to each other for each
classifier, i.e. 91% for NB, 94% for SVM, and 96% for LR, RF,
and XBG. This demonstrates that the logistic regression model
as well as the ensembles of decision trees can distinguish our
comment classes very well, which is also confirmed by the
respective MCC scores.

The results confirm that our approach is effective in classify-
ing source code comments of the considered systems. Almost
all ML classifiers achieve accurate results (from 94% to 96%
accuracy).

By comparing different settings for the classifiers, we can
comment on RQ2. The averaged cross-validation (CV) ac-
curacy for each experiment is shown in Tab. II. We start
with discussing the improvement that can be achieved by
optimizing the parameters of the classifiers using grid search.
Parameter tuning is particularly essential for SVM, and also
brings improvements for the probabilistic classifiers. The

TABLE II
EVALUATION OF FEATURES USING AVG. 5-FOLD CV ACCURACY.

NLP features
no param.

tuning
text

cleaning
count
vector

tf-idf
n-gram pattern

NB 0.8533 0.9145 0.9225 0.9135 0.9282
LR 0.8733 0.8883 0.9282 0.9441 0.9508
SVM 0.5647 0.9092 0.9192 0.9275 0.9331
RF 0.9056 0.8743 0.9381 0.9448 0.9551
XGB 0.7991 0.7882 0.9315 0.9288 0.9511

default parameters of the decision tree algorithms, however,
already work quite well (i.e., >90%).

Then, we compare the results of using NLP features in
addition to text cleaning techniques. We also contrast accuracy
values from applying different word vector representations,
i.e., count vectors and tf-idf vectors with n-grams. Finally, we
present the results of adding an additional feature based on
heuristics, namely the pattern information according to our
rules, using the best vector representation for each classifier.

Our experiments show the importance of feature dimension
for comment classification. When we only applied basic pre-
processing and text cleaning to train the classifiers, the results
are generally ≤ 91%. The results further approve that stacking
NLP with text features have positive impacts on classifying
source code comments (accuracy 92% to 94%). Lastly, when
we combined NLP features with heuristic features, the accu-
racy even further increased up to 96% for the RF as the best
classifier.

Thuswe can confirm that the use of advanced NLP pre-
processing techniques and features bring improvements in
(almost) all cases for classifying source code comments.

To sum up, decision tree algorithms, in particular RF, are
the most effective ML classifiers in automatically classifying
source code comments (see Tab. I). They work well on the
training set and are able to generalize to new source code
comments. Random forests are currently among the most
widely used ML methods and are able to automatically identify
the most relevant features from a plethora of features. They
can learn even from not preprocessed data (see Tab. II), that
is why they are also considered as a preliminary stage for DL.
Linear models also achieve good results and are fast to train
and predict, but the logistic regression classifier requires the
model complexity to be regularized. Naive Bayes tend to be
even faster in training than linear models but their performance
is worse. Deterministic classifiers, such as SVM, are powerful
models and often perform quite well but for classifying source
code comments they achieve a lower accuracy on average. In
addition, they are more sensitive to data pre-processing, feature
engineering, and parameters settings.

B. Comparing Heuristics and Learning Approaches

To determine the best performing approach in terms of time
effort and accuracy for source code comment classification
(RQ3), we compared the heuristic-based approach to our
most effective ML classifier. We also added the results of
the DL approach using CNN and word embedding (with the
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TABLE III
COMPARISON OF HEURISTICS, ML AND DL APPROACHES.

effort comments in
data/test set

correctly
detected acc

heuristics >4 days 4010 3832 0.9348
RF 4 days 1003 948 0.9452
RF +
heuristics >8 days 1003 965 0.9621

CNN 3 days 962 957 0.9948

best parameters obtained from grid search). Table III shows
accuracy and required effort of each approach.

The accuracy of the heuristic-based approach is about 93%
(similar to the results of NB and SVM). However, implemen-
tation and testing of rules for pattern recognition is time-
consuming (>4 days). The rules must also consistently be
adapted to new cases (languages, systems, etc.).

Compared to the results of the heuristics, the RF classi-
fier achieves a higher accuracy of 95%. It requires labeling
the 4010 documents manually by two experts (1 day) and
comprehensive text cleaning and feature engineering (3 days).
The combination of heuristics and ML approach manages to
improve the accuracy to 96%.

Finally, the CNN yields the best results with an accuracy
of 99%. We included the pre-trained GloVe word embedding
as the first layer of the CNN model to learn domain-specific
vocabulary, language-dependent properties and keywords. The
resulting model shows short training times and proved to
perform well on our training sample. Since we used a standard
architecture design for text classification, effort of the DL
approach is limited to hyperparameter tuning (2 days) and data
labeling (1 day). In contrast to the ML classifiers, the CNN
automatically learns the features from raw text data; thus, no
text cleaning or feature engineering is required.

C. Comparison with Existing Approaches

The most relevant approaches are [7], [8], which classify
Java and C/C++ source code comments using a J48 decision
tree algorithm and a naive Bayes Multinominal classifier
respectively. Both use specific text pre-processing and fea-
ture engineering with rule-based taxonomy classification, and
achieve a weighted average precision and recall of 93% to 96%
(on imbalanced data sets). In contrast to these approaches,
we base the classification on both, the comments’ syntax
and meaning and additionally evaluate deep learning methods,
which achieve even better results for comment classification.

V. DISCUSSION AND CONCLUSION

The binary classification using heuristics was developed for
the legacy system without taking into account the comment
categories from the literature. However, these categories could
also serve as a basis for the required classification. Most
categories are developer-specific and can be ignored for our
purpose, however, categories such as inline comment and sec-
tion comment are those that are desired for the documentation.

We developed the heuristics step by step for the batch pro-
grams. For the regeneration of documentation, this approach

requires a new quality control after updating the heuristics. A
one-time comment classification in an early project phase is
not only possible, but also keeps the documentation generation
stable over several versions of the software to be documented.
Unlike the development of heuristics, data labeling also has the
potential to be performed by the quality team that maintains
the documentation standard. We conclude that the comment
classification by machine learning (e.g., RF) and in particular
deep learning (e.g., CNN) is ready for industrial adoption in
the context of redocumentation. Even if they are not yet used
in industry, our experiments show that ML/DL achieves better
results than (industry-strength) heuristics. For future work,
we plan to investigate how our approach can be reused and
transferred to other (legacy) systems.
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