
1 23

Empirical Software Engineering
An International Journal

ISSN 1382-3256

Empir Software Eng
DOI 10.1007/s10664-019-09758-x

What kind of questions do developers
ask on Stack Overflow? A comparison of
automated approaches to classify posts into
question categories

Stefanie Beyer, Christian Macho,
Massimiliano Di Penta & Martin Pinzger

1 23

Your article is published under the Creative
Commons Attribution license which allows
users to read, copy, distribute and make
derivative works, as long as the author of
the original work is cited. You may self-
archive this article on your own website, an
institutional repository or funder’s repository
and make it publicly available immediately.

Empirical Software Engineering
https://doi.org/10.1007/s10664-019-09758-x

What kind of questions do developers ask on Stack
Overflow? A comparison of automated approaches
to classify posts into question categories

Stefanie Beyer1 ·Christian Macho1 ·Massimiliano Di Penta2 ·Martin Pinzger1

© The Author(s) 2019

Abstract
On question and answer sites, such as Stack Overflow (SO), developers use tags to label the
content of a post and to support developers in question searching and browsing. However,
these tags mainly refer to technological aspects instead of the purpose of the question. Tag-
ging questions with their purpose can add a new dimension to the identification of discussed
topics in posts on SO. In this paper, we aim at automating the classification of SO question
posts into seven question categories. As a first step, we harmonized existing taxonomies
of question categories and then, we manually classified 1,000 SO questions according to
our new taxonomy. Additionally to the question category, we marked the phrases that indi-
cate a question category for each of the posts. We then use this data set to automate the
classification of posts using two approaches. For the first approach, we manually analyzed
the phrases to find patterns. Based on regular expressions, we implemented a classifier, for
each of the categories, that determines whether a post belongs to a category. These regular
expressions are derived by analyzing patterns in the phrases. In the second approach, we use
the curated data set to train classification models of supervised machine learning algorithms
(Random Forest and Support Vector Machines). For the machine learning algorithms, we
experimented with 1,312 different configurations regarding the preprocessing of the text
and the representation of the input data. Then, we compared the performance of the regex
approach with the performance of the best configuration that uses machine learning algo-
rithms on a validation set of 110 posts. The results show that using the regular expression
approach, we can classify posts into the correct question category with an average precision
and recall of 0.90, and an MCC of 0.68. Additionally, we applied the regex approach on all
questions of SO that deal with Android app development and investigated the co-occurrence
of question categories in posts. We found that the categories API USAGE, CONCEPTUAL,
and DISCREPANCY are the most frequently assigned question categories and that they also
occur together frequently. Our approach can be used to support developers in browsing SO
discussions or researchers in building recommender systems based on SO.

Keywords Question categories · Machine learning · Stack Overflow · Android

Communicated by: Chanchal Roy, Janet Siegmund, and David Lo

! Stefanie Beyer
stefanie.beyer@aau.at

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09758-x&domain=pdf

Empirical Software Engineering

1 Introduction

Many developers use question and answer forums, such as Stack Overflow (SO), to dis-
cuss and solve their development issues. As a consequence, there are more than 16,000,000
diverse questions on SO that deal with developers’ problems. For these questions, there exist
more than 27,000,000 answer posts. In the following, we refer to the question posts as posts.
If not explicitly mentioned, the answer posts are not included. On the one hand side this is
good, since it enables developers to find solutions for their problems, on the other hand it is
challenging to find the right solution in such a large amount of posts. Furthermore, develop-
ers ask for a better data organization of Q&A forums to increase the search efficiency and
limit the time to find adequate solutions (Wu et al. 2018).

To refine the search and describe the questions briefly, each question post on SO is
labeled with 1 to 5 tags, as shown in Fig. 1, that describes the problem of the post. These
tags are often used by researchers as a starting point for the investigation of the topics that
are discussed on SO (Barua et al. 2012; Treude et al. 2011) The tags mainly aim at classi-
fying posts based on their technological content, e.g., whether a post is related to Android,
Java, Hadoop, etc. Hence, tags fail to classify questions based on their purpose e.g., dis-
cussing a possible defect, demonstrating proper API usage, providing opinions about a given
technology, or — some more general — conceptual suggestions.

However, as shown by recent research, it is not sufficient to analyze only the topics that
are discussed. When investigating the issues of developers, the reasons of developers to ask
questions should be considered as well (Beyer et al. 2017). These reasons are diverse and
categorizing the questions based on the reasons why they are asked is needed to determine
the role that SO plays for software developers (Rosen and Shihab 2015). Furthermore, as
found by Allamanis and Sutton (2013), the investigation of such reasons can provide more
insights into the most difficult aspects of software development and the usage of APIs.
Knowing question categories of posts can help developers to find answers on SO easier and
it can support SO-based recommender systems integrated into the IDE, such as Seahawk
and Prompter by Ponzanelli et al. (2013, 2014).

Existing studies already aim at extracting the problem and question categories of posts on
SO by applying manual categorizations (Rosen and Shihab 2015; Treude et al. 2011), topic
modeling (Allamanis and Sutton 2013), or k-nearest-neighbor (k-NN) clustering (Beyer and
Pinzger 2014). However, the manual approaches do not scale to larger sets of unlabeled

Fig. 1 Question 8981845 from SO with the phrase marked in red that is indicating the question category
REVIEW

Empirical Software Engineering

questions. The unsupervised topic modeling approach cannot directly be used to evaluate
the performance of the classification of questions. against a baseline, and the k-NN algo-
rithm shows a precision of only 41.33%. Furthermore, existing approaches use different but
similar taxonomies of question categories.

In this paper, we address these gaps and provide a common taxonomy for classifying
posts into question categories and investigate how, and to what extent we can classify SO
posts into such categories using different approaches, based on regular expressions (regex)
and machine learning algorithms. To get further insights into the reasons for discussion, we
apply the best performing approach to all Android related posts and investigate how the
question categories are distributed over the posts and which question categories often occur
together.

Regarding the question categories, we start from the definition provided by Allamanis
and Sutton (2013):

”By question types we mean the set of reasons questions are asked and what the users
are trying to accomplish. Question types represent the kind of information requested
in a way that is orthogonal to any particular technology. For example, some questions
are about build issues, whereas others request references for learning a particular
programming language.”

In contrast, problem categories — which can be expressed by SO tags — refer to the
topics or technologies that are discussed, such as SQL, CSS, user interface, Java, Python, or
Android. The problem categories do not reveal the reason why a developer asks a question.

In this paper, we focus on SO posts related to Android to investigate the question cat-
egories in the posts. Then, we aim at an automated classification of SO posts into these
categories. We decided to focus on a specific domain to show whether our approach works
there. If the approach works well, the generalization to a broader range of domains is easier
than to investigate why an approach that is set for various domains at once might not work.
We use Android as a case study since Android is one of the topics with the most increasing
popularity on SO (Barua et al. 2012; Wen et al. 2016) and several previous studies (Beyer
and Pinzger 2014; Rosen and Shihab 2015) also used Android to build their taxonomies.

Using the SO posts related to Android, we investigate how developers ask questions on
SO and address our first research question:

– RQ-1: What are the most frequently used question categories of Android posts on SO?

We answer this question by analyzing the question categories and reasons for questions
found in the existing studies (Allamanis and Sutton 2013; Beyer et al. 2017, 2014; Rosen
and Shihab 2015; Treude et al. 2011), and by harmonizing them in one taxonomy. As a
result, we obtain the 7 question categories: API CHANGE, API USAGE, CONCEPTUAL,
DISCREPANCY, LEARNING, ERRORS, and REVIEW.

We then manually label 1,000 Android related posts of SO and record each phrase, i.e.,
a sentence, part of a sentence, or paragraph of the text, that indicates a question category.

The set of posts and phrases is then used to automate the classification of posts into 7
question categories. With this, we aim to answer our second research question:

– RQ-2: To what extent can we automatically classify Stack Overflow posts into the 7
question categories?

We implemented two automated approaches to answer our research question: The first
one uses regular expressions to classify a post into a question category. The second approach

Empirical Software Engineering

trains models of supervised machine learning algorithms that automate the classification of
posts. To investigate each approach separately, we split RQ-2 into two the following two
subquestions:

– RQ-2.1:What is the performance of our regex approach for classifying Stack Overflow
posts into the 7 question categories?

– RQ-2.2: What is the performance of our best supervised machine learning model to
classify Stack Overflow posts into the 7 question categories?

The first approach uses regular expressions that are based on the patterns found in phrases
that indicate a question category.

The second approach uses the set of posts and phrases to train models that automate
the classification of posts using the supervised machine learning algorithms Random Forest
(RF) (Breiman 2001) and Support Vector Machines (SVM) (Cortes and Vapnik 1995). We
trained the models with 1,312 configurations of the input data and achieved the best perfor-
mance by using RF with phrases. We rerun the experiment with the best configuration 100
times to reduce the bias of the selection of the training and test set.

Then, we evaluated the performance of our classifiers on an independent test set of
110 SO posts that were neither used to extract patterns for the regular expressions nor to
train and test the models before. The results show that the regex approach outperforms the
machine learning algorithms with an average precision, recall, and MCC (Matthews Corre-
lation Coefficient) of 0.90, 0.90, and 0.68, respectively. Furthermore, this approach is much
faster and easier to adapt. We used the regex approach and applied it on all Android related
posts of the SO dump from September 2017 to answer our third research question:

– RQ-3: How are the question categories distributed across all Android-related posts and
to how many categories are posts assigned?

First of all, the application of the regex approach to all 1,052,568 Android questions
confirmed our findings of RQ-1 that API USAGE, DISCREPANCY, and CONCEPTUAL are
the most frequently used question categories. Furthermore, the results show that the majority
of the posts is classified in one to three categories and that the categories are mostly not
overlapping and the differentiation of the categories is clear.

Our results have several implications for developers and researchers. By integrating the
proposed classifier into SO, the search efficiency could be improved. The question cate-
gories of posts could work as tags and hence, developers can search by question categories.
For example, developers can use our approach to find API specific challenges by question
category. Also, the classification can be leveraged by researchers to build better SO-based
recommender systems. Furthermore, our results showed that machine learning algorithms
are not always the better choice to build a classifier, in particular, if the borders between the
classes are clear.

In summary, the main contributions of this paper are:

– A taxonomy of 7 question categories that harmonizes the taxonomies of prior studies.
– A manually labeled data set that maps 2,192 phrases of 1,000 posts to 7 question

categories.
– An approach to automatically classify posts into the 7 question categories using regular

expressions.
– An approach to automatically classify posts into the 7 question categories using

machine learning algorithms
– An evaluation of the performance of the classifiers on an independent data set.

Empirical Software Engineering

– An investigation of the question categories in all Android-related questions of SO that
were asked until December 2017 using our best performing approach.

Furthermore, we provide all supplementary material that allows the replication and
extension of our approach (Beyer et al. 2019).

This paper extends our ICPC 2018 paper ’Automatically Classifying Posts into Question
Categories on Stack overflow’ (Beyer et al. 2018). The field of program comprehen-
sion, as defined by the ICPC committee, is broad and ranges from the comprehension
of source code, to software artifacts and the software lifecycle. With this paper, we con-
tribute to the comprehension of software artifacts (posts of Stack Overflow) by providing an
approach to automatically label posts with question categories. This in turn enables a more
comprehensive understanding of the problems that Android app developers face.

Compared to the original paper, we provide an entirely new automated approach to clas-
sify posts into question categories using regular expressions. Furthermore, we extended our
feature model for the classification with supervised machine learning algorithms by consid-
ering the length of the posts, the readability and sentiment score, and whether they contain
code snippets.

We performed an additional experiment using the best performing approach i.e., the
regex approach, to study the question categories of all of the 1,052,568 Android-related
questions on SO.

The remainder of this paper is organized as follows: In Section 2, we describe how we
harmonized the existing question categories from prior studies. In Section 3, we describe the
manual analysis of the posts and present the answer to RQ-1. In Section 4, we describe the
setup of the automated classification, consisting of the general settings for both classifiers,
as well as the specific settings for the regex approach and the experiments with the machine
learning algorithms. The results of our experiments of the classification are presented in
Section 5. Furthermore, we evaluate and compare the performance of our approaches in
Section 6. We applied the best performing approach to 1,052,568 Android-related posts and
present the results in Section 7. In Section 8, we discuss the implications of our results, as
well as the threats to validity in Section 8.3. In Section 9, we present related work. Finally,
in Section 10, we draw conclusions and discuss future work.

2 A taxonomy of Question Categories

In this section, we present our taxonomy of seven question categories that we derived from
five taxonomies presented in previous studies. We selected the papers based on their content,
whether they deal with question categories in the context of Android app development. To
the best of our knowledge, the selected papers were the only ones that fit to these criteria
when we started with our study. Analyzing the prior studies of Allamanis and Sutton (2013),
Rosen and Shihab (2015), Treude et al. (2011), Beyer and Pinzger (2014), and Beyer et al.
(2017) that investigate the posts according to their question categories, we found 5 different
taxonomies. We decided to use these taxonomies rather than creating a new taxonomy, for
instance through card sorting, since they are already validated and suitable to this context.

To harmonize the taxonomies, we compared the definitions of each category and merged
similar categories. We removed categories, such as hardware, device, environment, external
libraries, or novice, as well as categories dealing with different dimensions of the problems,
such as questions asked by newbies, non-functional questions, and noise, because we found
that they represent problem categories and not question categories. The final categorization

Empirical Software Engineering

was discussed with and validated by two additional researchers of our department who are
familiar with analyzing SO posts.

Finally, we came up with 7 question categories merged from the prior studies:

API usage This category subsumes questions of the types How to implement something
and Way of using something (Allamanis and Sutton 2013), as well as the category How-to
(Beyer and Pinzger 2014; Treude et al. 2011), and the Interaction of API classes (Beyer
et al. 2017). The posts falling into this category contain questions asking for suggestions on
how to implement some functionality or how to use an API. The questioner is asking for
concrete instructions.

Discrepancy This question category contains the categories Do not work (Allamanis and
Sutton 2013), Discrepancy (Treude et al. 2011), What is the Problem...? Beyer and Pinzger
(2014), as well as Why.1 The posts of this category contain questions about problems and
unexpected behavior of code snippets whereas the questioner has no clue how to solve it.

Errors This question category is equivalent to the category Error and Exception Handling
from Beyer and Pinzger (2014) and Treude et al. (2011). Furthermore, it overlaps with
the category Why (Rosen and Shihab 2015).1 Similar to the previous category, posts of
this category deal with problems of exceptions and errors. Often, the questioner posts an
exception and the stack trace and asks for help in fixing an error or understanding what the
exception means.

Review This category merges the categoriesDecision Help and Review (Treude et al. 2011),
the category Better Solution (Beyer and Pinzger 2014), andWhat (Rosen and Shihab 2015),2

as well as How/Why something works (Allamanis and Sutton 2013).3 Questioners of these
posts ask for better solutions or reviewing of their code snippets. Often, they also ask for
best practice approaches or ask for help to make decisions, for instance, which API to select.

Conceptual This category is equivalent to the category Conceptual (Treude et al. 2011) and
subsumes the categories Why...? and Is it possible...? Beyer and Pinzger (2014). Further-
more, it merges the categories What (Rosen and Shihab 2015)2 and How/Why something
works3 (Allamanis and Sutton 2013). The posts of this category consist of questions about
the limitations of an API and API behavior, as well as about understanding concepts, such
as design patterns or architectural styles, and background information about some API
functionality.

API change This question category is equivalent to the categories Version (Beyer and
Pinzger 2014) and API Changes (Beyer et al. 2017). These posts contain questions that arise
due to the changes in an API or due to compatibility issues between different versions of an
API.

1The category Why from Rosen and Shihab (2015) dealing with questions about non working code, errors,
or unexpected behavior is split into DISCREPANCY and ERRORS.
2Rosen and Shihab (2015) merge abstract questions, questions about concepts, as well as asking for help to
make a decision into the question category What.
3Allamanis and Sutton (2013) merge questions about understanding, reading, explaining and checking into
the category How/Why something works.

Empirical Software Engineering

Learning This category merges the categories Learning a Language/Technology (Allama-
nis and Sutton 2013) and Tutorials/Documentation (Beyer et al. 2017). In these posts, the
questioners ask for documentation or tutorials to learn a tool or language. In contrast to
the first category, they do not aim at asking for a solution or instructions on how to do
something. Instead, they aim at asking for support to learn on their own.

Table 1 shows an overview of the categories taken from prior studies and how we merged
or split them. Categories in the same row match each other, categories that stretch over
multiple rows are split or merged.

3 Manual Classification

In this section, we present our manual classification of 1,000 Android-related SO posts into
the seven question categories. First, we describe the approach to obtain the 500 posts that
were used in our previous work (Beyer et al. 2018). Then, we describe how we increased
the number of labeled posts 500 to 1,000. Based on the results of the obtained classification,
we answer RQ-1.

3.1 Experimental Setup

We used the posts’ data dump of SO from September 2017. Since our goal is to analyze
posts that are related to Android app development, we selected posts that are tagged with
android. From the resulting 1,052,568 posts, we randomly selected 1,000 posts from SO.

These posts were then manually labeled by two researchers of our department as follows:
Each person got a set of 1,000 posts and marked each phrase that indicates a question
category. A phrase can be a paragraph, a sentence, or a part of a sentence. Hence, a post can
have more than one category, as well as several times the same category.

The first set of 50 posts was jointly labeled by both investigators to agree on a common
categorization strategy. The remaining posts were labeled by each investigator separately.
We calculated the Fleiss-Kappa inter-rater agreement (Fleiss 1971) and obtained a κ =
0.49, meaning moderate agreement. However, we compared our results and found that the
main differences were because of overlooked phrases of the investigators. We also discussed
the posts in which the assigned question categories differed until we agreed on the labels of
the posts. The main discussion was about whether a phrase refers to the question category
CONCEPTUAL or REVIEW.

Figure 1 shows an example of labeling the post with the id 8981845. The phrase
indicating that the post belongs to the question category REVIEW, is marked in red.

In the set of 500 posts, we found only 10 posts with the category API CHANGE and 15
posts with the category LEARNING. We decided to increase the number of posts for each
of these two question categories to 30, to obtain more reliable classification models. For
both question categories, we randomly selected 100 additional posts that contain at least
one phrase indicating the category. Then, we manually assigned the question categories to
the posts until we got 20 additional posts with the category API CHANGE and 15 additional
posts with the category LEARNING. We end up with a set of 500 labeled posts and 1,147
phrases.

To increase the dataset we created in our previous work (Beyer et al. 2018), we randomly
selected 550 posts that were not used for testing, training, or validation in the previous study.
We intentionally selected more than 500 posts, since the labeling of the previous training
and validation set showed that there are posts without any phrases that indicate a category.

Empirical Software Engineering

Ta
bl
e
1

O
ur

7
qu
es
tio

n
ca
te
go
ri
es

ha
rm

on
iz
ed

fr
om

th
e
fiv

e
pr
io
ra

pp
ro
ac
he
s
(A

lla
m
an
is
an
d
Su

tto
n
20
13
;B

ey
er

et
al
.2
01
7;

B
ey
er

an
d
Pi
nz
ge
r2

01
4;

R
os
en

an
d
Sh

ih
ab

20
15
;

Tr
eu
de

et
al
.2
01
1)

?
R
os
en

an
d
Sh

ih
ab

(2
01
5)

A
lla
m
an
is
an
d
Su

tto
n
(2
01
3)

Tr
eu
de

et
al
.(
20
11
)

B
ey
er

an
d
Pi
nz
ge
r(
20
14
)

B
ey
er

et
al
.(
20
17
)

A
PI

U
S
A
G
E

H
ow

:
A

ho
w

ty
pe

of
qu
es
-

tio
ns

as
ks

fo
rw

ay
s
to
ac
hi
ev
e

a
go
al
.
T
he
se

qu
es
tio

ns
ca
n

as
k
fo
r
in
st
ru
ct
io
ns

on
ho
w

to
do

so
m
et
hi
ng

pr
og
ra
m
-

m
at
ic
al
ly

to
ho
w

to
se
tu
p
an

en
vi
ro
nm

en
t.
A

sa
m
pl
e
ho
w

qu
es
tio

n
as
ks
:
H
ow

ca
n

I
di
sa
bl
e
la
nd
sc
ap
e
m
od
e
fo
r

so
m
e

of
th
e

vi
ew

s
in

m
y

A
nd
ro
id

ap
p?

H
ow

to
im
pl
em

en
t

so
m
e-

th
in
g:

cr
ea
te
,t
o
cr
ea
te
,i
s
cr
e-

at
in
g,

ca
ll,

ca
n

cr
ea
te
,
ad
d,

w
an
tt
o
cr
ea
te

H
ow

-t
o:

Q
ue
st
io
ns

th
at

as
k

fo
r
in
st
ru
ct
io
ns
,e
.g
.”
H
ow

to
cr
op

im
ag
e
by

16
0
de
gr
ee
s

fr
om

ce
nt
er

in
as
p.
ne
t”
.

H
ow

-t
o:

th
e
qu
es
tio

ne
r
do
es

no
tk

no
w

ho
w
to

im
pl
em

en
t

it.
T
he

qu
es
tio

ne
r
of
te
n
as
ks

ho
w

to
in
te
gr
at
e

a
gi
ve
n

so
lu
tio

n
in
to

he
r
ow

n
co
de

or
as
ks

fo
re

xa
m
pl
es
.

W
ay

of
us
in
g
so
m
et
hi
ng
:
to

us
e,

ca
n
us
e,

to
do
,
w
an
t
to

us
e,
to

ge
t,
ca
n
do
,i
ns
te
ad

of

In
te
ra
ct
io
n
of

A
P
I
C
la
ss
es
:

Fu
rt
he
rm

or
e,

se
ve
ra
l
po
st
s

di
sc
us
s

th
e

in
te
ra
ct
io
n

of
A
PI

cl
as
se
s,

su
ch

as
A
ct
iv
-

ity
,A

sy
nc
Ta
sk
,a
nd

In
te
nt
s.

D
IS

C
R
E
PA

N
C
Y

W
hy
:

w
hy

ty
pe

of
qu
es
-

tio
ns

ar
e

us
ed

to
as
k

th
e

re
as
on
,

ca
us
e,

or
pu
rp
os
e

fo
r

so
m
et
hi
ng
.
T
he
y

ty
pi
-

ca
lly

in
vo
lv
e
qu
es
tio

ns
cl
ar
i-

fy
in
g
w
hy

an
er
ro
r
ha
s
ha
p-

pe
ne
d
or

w
hy

th
ei
r
co
de

is
no
t
do
in
g
w
ha
t
th
ey

ex
pe
ct
.

A
n
ex
am

pl
e
w
hy

qu
es
tio

n
is
:

Id
on
’t
un
de
rs
ta
nd

w
hy

it
ra
n-

do
m
ly

oc
cu
rs
?

D
o
no
t
w
or
k:

do
es
n’
t
w
or
k,

w
or
k,
tr
y,
di
dn
’t
,w

on
’t
,i
sn
’t
,

w
ro
ng
,
ru
n,

ha
pp
en
,
ca
us
e,

oc
cu
r,

fa
il,

w
or
k,

ch
ec
k,

to
se
e,
fi
ne
,d

ue

D
is
cr
ep
an
cy
:S
om

e
un
ex
pe
ct
ed

be
ha
vi
or

th
at

th
e
pe
rs
on

as
k-

in
g
th
e
qu
es
tio

n
w
an
ts

to
be

ex
pl
ai
ne
d,
e.
g.
“i
ph
on
e
-C

or
e-

m
ot
io
n

ac
ce
le
ra
tio

n
al
w
ay
s

ze
ro
”.

W
ha
t
is

th
e
P
ro
bl
em

:
pr
ob
-

le
m
s
w
he
re

th
e
qu
es
tio

ne
r

ha
s
an

id
ea

ho
w

to
so
lv
e
it,

bu
t
w
as

no
t
ab
le

to
im

pl
e-

m
en
t
it
co
rr
ec
tly
.
T
he

po
st
s

of
te
n

co
nt
ai
n

H
ow

to
...
?

qu
es
tio

ns
,f
or

w
hi
ch

th
er
e
is

no
w
or
ki
ng

so
lu
tio

n.

Empirical Software Engineering

Ta
bl
e
1

(c
on
tin

ue
d)

?
R
os
en

an
d
Sh

ih
ab

(2
01
5)

A
lla
m
an
is
an
d
Su

tto
n
(2
01
3)

Tr
eu
de

et
al
.(
20
11
)

B
ey
er

an
d
Pi
nz
ge
r(
20
14
)

B
ey
er

et
al
.(
20
17
)

E
R
R
O
R
S

E
rr
or
:Q

ue
st
io
ns

th
at
in
cl
ud
e

a
sp
ec
if
ic
er
ro
r
m
es
sa
ge
,e
.g
.

C
#
O
bs
cu
re

er
ro
r:
fi
le
”c
ou
ld

no
tb

e
re
fa
ct
or
ed
”

E
rr
or
:
de
sc
ri
be

th
e

oc
cu
r-

re
nc
e
of

er
ro
rs
,
ex
ce
pt
io
ns
,

cr
as
he
s

or
ev
en

co
m
pi
le
r

er
ro
rs
.
A
ll
po
st
s
in

th
is

ca
t-

eg
or
y
co
nt
ai
n
a
st
ac
k
tr
ac
e,

er
ro
rm

es
sa
ge
,o
rw

ar
ni
ng
.

E
xc
ep
tio

n
H
an
dl
in
g:

17
po
st
s

di
sc
us
s

pr
ob
le
m
s

w
ith

ha
n-

dl
in
g
ex
ce
pt
io
ns
.

R
E
V
IE

W
W
ha
t:
A

w
ha
tt
yp
e
of

qu
es
-

tio
n

as
ks

fo
r

in
fo
rm

at
io
n

ab
ou
t
so
m
et
hi
ng
.
T
he
y
ca
n

be
m
or
e
ab
st
ra
ct

an
d

co
n-

ce
pt
ua
l
in

na
tu
re
,
as
k

fo
r

he
lp

in
m
ak
in
g
a
de
ci
si
on
,

or
as
k
ab
ou
t
no
n-
fu
nc
tio

na
l

re
qu
ir
em

en
ts
.
Fo

r
ex
am

pl
e

qu
es
tio

ns
ab
ou
t

sp
ec
if
ic

in
fo
rm

at
io
n

ab
ou
t

a
pr
o-

gr
am

m
in
g
co
nc
ep
t:
E
xp
la
in

to
m
e
w
ha
t
is

a
se
tte
r
an
d

ge
tte

r.
W
ha
t
ar
e
se
tte

rs
an
d

ge
tte
rs
?

co
ul
dn
’t

fi
nd

it
on

w
ik
ip
ed
ia

an
d

in
ot
he
r

pl
ac
es
.

D
ec
is
io
n
H
el
p:

A
sk
in
g
fo
r

an
op
in
io
n,

e.
g.
,
Sh

ou
ld

a
bu
si
ne
ss

ob
je
ct

kn
ow

ab
ou
t

its
co
rr
es
po
nd
in
g

co
nt
ra
ct

ob
je
ct
.

B
et
te
r
So
lu
tio

n:
co
nt
ai
n
qu
e

st
io
ns

fo
r
be
tte
r
so
lu
tio

ns
or

be
st
pr
ac
tic
e
so
lu
tio

ns
.T

yp
-

ic
al
ly
,t
he

qu
es
tio

ne
ra
lr
ea
dy

ha
s
an

un
sa
tis
fa
ct
or
y
so
lu
-

tio
n
fo
rt
he

pr
ob
le
m
.

H
ow

/W
hy

so
m
et
hi
ng

w
or
ks
:

ho
pe
,

m
ak
e,

un
de
rs
ta
nd
,

gi
ve
,
to

m
ak
e,

w
or
k,

re
ad
,

ex
pl
ai
n,

ch
ec
k

R
ev
ie
w
:
Q
ue
st
io
ns

th
at

ar
e

ei
th
er

im
pl
ic
itl
y
or

ex
pl
ic
itl
y

as
ki
ng

fo
r
a
co
de

re
vi
ew

,e
.g
.

”S
im

pl
e

fi
le

do
w
nl
oa
d

vi
a

H
T
T
P
-i
s
th
is
su
ff
ic
ie
nt
?”
.

Empirical Software Engineering

Ta
bl
e
1

(c
on
tin

ue
d)

?
R
os
en

an
d
Sh

ih
ab

(2
01
5)

A
lla
m
an
is
an
d
Su

tto
n
(2
01
3)

Tr
eu
de

et
al
.(
20
11
)

B
ey
er

an
d
Pi
nz
ge
r(
20
14
)

B
ey
er

et
al
.(
20
17
)

C
O
N
C
E
P
T
U
A
L

C
on
ce
pt
ua
l:

Q
ue
st
io
ns

th
at

ar
e
ab
st
ra
ct

an
d
do

no
th

av
e

a
co
nc
re
te

us
e

ca
se
,
e.
g.

”C
on

ce
pt

of
xm

ls
ite

m
ap
s”
.

W
hy
:

fo
cu
s

on
ob
ta
in
in
g

ba
ck
gr
ou
nd

in
fo
rm

at
io
n
on

a
co
m
po
ne
nt

or
lif
e
cy
cl
e.
T
he

qu
es
tio

ne
r
as
ks

fo
r
ex
pl
an
a-

tio
n
an
d
un
de
rs
ta
nd
in
g.

Is
it
po
ss
ib
le
:
co
nt
ai
n
qu
es
-

tio
ns

to
ge
t
m
or
e
in
fo
rm

a-
tio

n
ab
ou
t
th
e
po
ss
ib
ili
tie
s

an
d
lim

ita
tio

ns
of

A
nd
ro
id

ap
ps

or
se
ve
ra
lA

PI
s.

A
PI

C
H
A
N
G
E

Ve
rs
io
n:

de
al

w
ith

pr
ob
le
m
s

th
at

oc
cu
r
w
he
n

ch
an
gi
ng

th
e
A
PI

le
ve
l.
Fu

rt
he
rm

or
e,

th
is

ca
te
go
ry

co
nt
ai
ns

po
st
s

th
at

de
al

w
ith

th
e
co
m
pa
ti-

bi
lit
y
of

A
PI

ve
rs
io
ns
.

A
P
I

C
ha
ng
es
:

Fu
rt
he
r

3
po
st
s
di
sc
us
s
ho
w

to
im

pl
e-

m
en
t
fe
at
ur
es

fo
r
ne
w
er

or
ol
de
rv

er
si
on
s
of

th
e
A
PI
.I
n

2
of

th
e
10
0
po
st
s
th
e
pr
ob
-

le
m

re
la
te
s

to
de
pr
ec
at
ed

m
et
ho
ds

in
th
e
A
PI

cl
as
se
s.

3
po
st
s
di
sc
us
s
bu
gs

in
th
e

A
nd
ro
id

A
PI

an
d

re
st
ri
c-

tio
ns

of
A
nd
ro
id

ve
rs
io
ns

to
ac
ce
ss

M
ic
ro

SD
ca
rd
s.

Le
ar
ni
ng

a
La

ng
ua
ge
/
Te
ch
-

no
lo
gy
:
le
ar
n,

to
le
ar
n,

st
ar
t,

re
ad
,

un
de
rs
ta
nd
,

re
co
m
-

m
en
d,
fi
nd
,g

oo
d

Tu
to
ri
al
s/
D
oc
u:

In
10

po
st
s,

th
e

de
ve
lo
pe
rs

m
en
tio

n
tu
to
ri
al
s
an
d
do
cu
m
en
ta
tio

n
sh
ou
ld

co
ve
r
pa
rt
s

of
th
e

A
nd
ro
id

A
PI

in
m
or
e
de
ta
il.

Empirical Software Engineering

From the 550 posts, we selected the first 500 where we could find a question category. For
the labeling, we followed the same approach as before except the jointly labeling of the
posts. We calculated again the Fleiss-Kappa inter-rater agreement and achieved a κ = 0.45
for the new set of labeled posts. As for the first set of 500 posts, we discussed the deviant
labels until we reached an agreement.

3.2 Results

In total, we manually analyzed 1052 posts and for 1,000 posts, we could identify 2,192
phrases leading to a question category.

For 52 posts, we could not find any phrase that indicates one of our seven question
categories.

The post 174858044 represents an example of such a post that we could not assign to any
of the seven question categories. Reading the question, it was unclear to both investigators
if the questioner asks for help on the implementation or if she asks for hints on how to use
the app.

Using the set of 1,000 posts, we then analyzed how often each question category and
each phrase occurs. The results are presented in Table 2, showing the number of posts and
the number of phrases for each question category, as well as the most common phrases
(including their count) found in the posts for each category.

The results show that API USAGE is the most frequently used question category assigned
to 388 out of the 1,000 posts (38.8%) and 537 phrases. 247 times the question category was
identified by the phrase ”how to”. The second most frequently assigned question category is
DISCREPANCY with 313 posts (31.3% of the posts) and 434 phrases. The phrase ”i try/tried
to” is the most frequently occurring phrase, namely 125 times, to identify this question
category. Interestingly, the question category with the second highest number of phrases,
namely 457, is ERRORS contained by 225 posts (22,5%). Furthermore, 49 posts (4.9%)
were assigned to API CHANGE and 38 posts (3.8%) were assigned to the question category
LEARNING.

Note that the post counts sum up to more than 1,000 because a post can be assigned to
more than one question category. Based on these results, we can answer the first research
question ”What are the most frequently used question categories of Android posts on
SO?” with: Most posts, namely 388 out of 1000 (38.8%), fall into the question cate-
gory API USAGE followed by the categories DISCREPANCY with 313 posts (31.3%) and
CONCEPTUAL with 268 posts (26.8%).

Our findings confirm the results of the prior studies presented in Beyer and Pinzger
(2014), Rosen and Shihab (2015), and Treude et al. (2011) showing that API USAGE is the
most frequently used question category. Similarly to these studies, the categories CONCEP-
TUAL, DISCREPANCY, and ERRORS showed to be among the top 2 to 4 most frequently
used categories.

4 Setup of the Automated Classification

In this section, we first describe the general settings that hold for both the automated classifi-
cation based on regular expressions and the automated classification with machine learning

4https://stackoverflow.com/questions/17485804/showing-overlay-help-in-android-app

https://stackoverflow.com/questions/17485804/showing-overlay-help-in-android-app

Empirical Software Engineering

Table 2 Number of posts per question category and most frequently used phrases to identify each question
category

Category # of posts # of phrases Most frequently used phrases (count)

API USAGE 388 537 how to (247), how can/could I
(140), how do I/does (58)

CONCEPTUAL 268 379 is there a/any way to (68), what
is the difference between/the use
of/the purpose of (45), can I use
(12), is it possible to (55)

DISCREPANCY 313 434 i try/tried to (125), do/does not
work (81), what is/am i doing
wrong (52), solve/fix/I have the
problem (72)

ERRORS 225 457 (fatal/uncaught/throwing) excep-
tion (189), get/getting/got (an)
error(s) (75)

REVIEW 172 229 is there a bet-
ter/best/proper/correct/more
efficient/simpler way to (51),
(what) should I use/switch/do
(26), is this/my understandings
right/wrong (19)

API CHANGE 49 80 before/after (the) update/upgrade
(to API/version/level) (16),
work above/below/with API
level/android/version x.x (but) (9)

LEARNING 38 46 suggest/give me/find (links to) tuto-
rial(s)/material (29)

algorithms. Then, we describe the specific experimental setup for the regex approach and
the machine learning algorithms.

4.1 General Settings

In the following, we describe our settings regarding the classification, the data set, and the
metrics to evaluate the performance of the classifier.

Binary Classifier The manual classification of the posts showed that a post may belong
to more than one question category. Hence, we have a multi-label classification problem.
For this reason, we do not rely on a single (multi-category) classifier, classifying each post
into one of the seven categories. Instead, using the binary relevance method (Read et al.
2011), we transform the multi-label classification into a binary classification: We imple-
mented a classifier/ a model for each question category to determine if a post falls into that
category.

Since a post can have multiple labels, we selected for each post only the positive
instances, the others are excluded. For example, consider the following three posts p, q, and
r: p contains one phrase of the category API USAGE, q one phrase of the category REVIEW,
and r one phrase of both categories. To train a model that classifies whether a post belongs
to the API USAGE category, we select the posts p and r because they contain phrases that

Empirical Software Engineering

belong to API USAGE and use them as TRUE instances. For the FALSE instances, we only
include post q. Post r is excluded from the FALSE instances.

Data set For the refinement of the classifiers for the regex approach and for the training
and testing of the models, we used the set of 1,000 posts resulting from our manual classi-
fication before. From each post, we extracted the title and the body and concatenated them.
Furthermore, we removed HTML tags, as well as code snippets which are enclosed by the
tags <code> and </code>, and contain more than one word between the tags.

Performance To measure and compare the performance of the classifier, we computed
the accuracy, precision, recall, f-score, AUC, and Mathews correlation coefficient (MCC)
(Chicco 2017; Powers 2011) metrics. Note that we report metrics for both sides of the
classification: whether a post was classified correctly as belonging to a question category
(classT) and whether a post was classified correctly as not belonging to a question category
(classF).

– Accuracy (acc) is the ratio of correctly classified posts into classT and classF with
respect to all classified posts. Values range from 0 (low accuracy) to 1 (high accuracy).

– Precision (prec) is the ratio of correctly classified posts with respect to all posts
classified into the question category. Values range from 0 (low precision) to 1 (high pre-
cision). The weighted average precision is calculated as the mean of precT and precF
with respect to the number of posts predicted for each class.

– Recall (rec) is the ratio of correctly classified posts with respect to the posts that are
actually observed as true instances. Values range from 0 (low recall) to 1 (high recall).
The weighted average recall is calculated as the mean of recT and recF with respect to
the number of posts labeled with each class.

– F-score (f) denotes the harmonic mean of precision and recall. The values range from
0 (low F-score) to 1 (high F-score). The weighted average F-score is calculated as the
mean of fT and fF with respect to the number of posts labeled with each class.

– Area under ROC-Curve (AUC) measures the ability to classify posts correctly into a
question category using various discrimination thresholds. An AUC value of 1 denotes
the best performance, and 0.5 indicates that the performance equals a random classifier
(i.e., guessing).

– Matthews Correlation Coefficient (MCC) measures the performance of binary clas-
sifiers by considering the correctly classified posts, true positives (TP) and true
negatives(TN), and the misclassified posts false positives (FP) and false negatives (FN).
It is determined by calculating the ratio of the difference of the product of the cor-
rectly classified instances (TP · TN) and the product of the misclassified instances (FP
· FN) to the root of the product of the sum of each combination of TP, TN, FP, and FN:
mcc = (T P ·TN)−(FP ·FN)√

(T P+FP)·(T P+FN)·(T N+FP)·(T N+FN)

The values range from -1 (total disagreement between labeled posts and the classifier)
to 1 (perfect classifier) and a value of 0 means that the classifier is as good as any
random prediction.

4.2 Experimental Setup of the Regex Approach

In the following, we describe our approach to automate the classification of posts into the 7
question categories using regular expressions.

Empirical Software Engineering

During the manual classification of posts into question categories, we additionally
marked the phrases that indicate a certain question category. We analyzed these phrases and
extracted patterns that we composed to regular expressions. Based on the regular expres-
sions, we implemented an automated classifier for each of the categories to decide whether
a post belongs to this question category. To obtain the regular expressions, we used the
following steps:

1. Recurrent phrases: As shown in Table 2, there are phrases that recurrently point to
a certain category for each question category. For instance, the phrase how to was
marked 247 times to indicate the question category API USAGE. As a first step, we
identified these recurrent phrases for each category and used them in our classifier. For
the category API CHANGE, there are no recurrent phrases. In this case, we skipped this
step.

2. Patterns in phrases: We searched for patterns in the phrases that occur with different
verbs or personal pronouns and formed regular expressions that fit these patterns. For
instance, for the question category API USAGE, we found the pattern how <verb>
<personal pronoun> do which match the phrases such as how can I do,
how can you do, and how can one do. These phrases are implemented in the
regular expression ’how can (I|you|one) do’. This is done similarly for the
other question categories.

3. Combinations: The patterns that we obtained in the preceding two steps do not
cover all possible phrases that indicate a question category. To expand our set
of regular expressions to a broader variety of phrases, we combined patterns if
the combination would lead to a meaningful phrase. Hence, we cover a variety
of phrases that even do not occur in the set of posts that we manually investi-
gated. Exemplary, for API CHANGE, we combined the phrases before upgrading
and after updating to the pattern (before|after)([ˆ\s]+){0,5}
(upgrad(\w{1,4})|updat(\w{1,4})|
downgrad(\w{0,4}). By stemming the verbs, we are able to catch also different
tenses.

4. Anti-patterns: While analyzing the recurrent phrases for each category, we found
that sometimes the phrases of different categories are similar but not identical since
they appear most often together with unambiguous phrases or words that indicate
the question category clearly. Hence, we decided to implement anti-patterns that
use these unambiguous phrases to indicate that a post does not belong to a cat-
egory. Examples for anti-patterns of the question category API USAGE are how
(((can|do|does|would) (I|you|one))|to) solve and understand (
[ˆ\s]+){1,5} how.

5. Refinements: In an iterative refinement process, we revised the set of regular expres-
sions to improve the performance of the classifiers. We substituted too generous
phrases, such as how to for the question category API USAGE with more specific
ones. To obtain more specific phrases, we manually investigated the context of the
phrases in the posts and extended the phrases. For instance, the phrase how to is sub-
stituted by the regular expression how to (use|do|achieve|get|implement).

To decide whether a post belongs to a question category, we sum up the count how often
each regular expression for pattern (p) and anti-pattern (ap) matches. Then, we subtract
the number of matched anti-patterns from the number of matched patterns. If the result is
positive, the post is classified into the category. A positive result means that the post contains
more phrases that indicate a question category than phrases that indicate that a post does not

Empirical Software Engineering

belong to this category. In contrast, if there are more phrases that indicate that a post does
not belong to a category, or the number of matched phrases for the patterns and antipatterns
is equal, we do not assign the post to this category.

category =
{
T RUE, for p − ap > 0
FALSE, for p − ap ≤ 0

Please note that the regular expressions including the patterns and antipatterns for all
question categories can be found in our replication package??.

4.3 Experimental Setup UsingMachine Learning Algorithms

Previous research on the efficiency of machine learning algorithms in text classification
tasks shows that classical, supervised machine learning algorithms, such as (RF) or (SVM),
can perform equally well or even better than deep learning techniques (Fu and Menzies
2017). Furthermore, deep learning techniques usually are more complex, slower, and tend
to over-fit the models when a small data set is used.

Therefore, we selected the supervised machine learning algorithms RF (Breiman 2001)
and SVM (Cortes and Vapnik 1995) for our experiments to find models that can automate
the classification of SO posts into the seven question categories. We ran the experiments
using the default parameters provided by the respective implementation of R: ntree(number
of trees) = 500 for RF, and gamma = 0.1, epsilon = 0.1, and cost = 1 for SVM.

Furthermore, we investigated whether part-of-speech patterns indicate question cate-
gories, following a similar approach as Chaparro et al. (2017) for bug reports. To get the
part-of-speech tags, we used spaCy,5 a Python-based part-of-speech tagger that has been
shown to work best for SO data compared to other NLP libraries (Omran and Treude 2017).
Using spaCy, we created the part-of-speech tags for the title, the body, and the phrases of
a post. While Chaparro et al. also used NLP patterns, we opted for a simple, effective, and
pretty consolidated approach to classify text, such as the one successfully used by Villarroel
et al. (2016) and Scalabrino et al. (2017), when classifying app reviews.

We divide our data set into a training set and a testing set, consisting of 90% and 10%
of the data, respectively. We apply random stratified sampling to ensure that 10% or at least
three posts of each category are contained in the test set. We used random sampling instead
of a n-fold cross-validation because it shows better results than n-fold cross-validation
(Kohavi 1995).

To determine the configuration that yields the best results, we conducted our experiments
using various configurations concerning the input type, the removal of stop words, the anal-
ysis of the text in n-grams, pruning of frequently used tokens, and using re-sampling of the
input data. Additionally, we optionally consider the readability of the posts, the sentiments
expressed in the posts, the number of words a post consists of, and whether a post contains
a code snippet or not. Note, not all possible combinations make sense and are applicable.
Pruning n-grams of the size 3 does not work, since too many tokens would be removed.
Therefore, we excluded all runs that combine n-grams of size 3 and pruning. Furthermore,
we did not perform stop word removal for POS tags.

In the following, we detail these configuration options:

Input type: We selected either the text (TXT), or part-of-speech tags (POS), or both rep-
resentations (COMBI) of the data. When using the TXT or COMBI representation of

5https://spacy.io

https://spacy.io

Empirical Software Engineering

the posts, we lowercased and stemmed the text using R’s implementation of Porter’s
stemming algorithm (Porter 1997).

Stop words (sw). We applied stop word removal, using a modified version of the default
list of English stop words provided by R. We removed the words ”but, no, not, there”,
and ”to” from the list of stop words, because they are often used in our phrases and can
indicate differences between the seven categories. For instance, in the sentence ”How
to iterate an array in Java” the phrase ”How to” indicates the question category API
USAGE while in the sentence ”How could this be fixed?” the whole phrase indicates
the category DISCREPANCY. The stop-word ”to” helps to differentiate between the two
question categories, hence, we kept it in the list.

N-grams. We computed the n-gram tokens for n=1, n=2, and n=3. When using the
COMBI representation of the data, a separate n is given for the TXT and the POS
representation of the data. We refer to them as ntxt and npos , respectively.

Pruning. When pruning was used, tokens that occur in more than 80% of all posts were
removed because they do not add information for the classification. We also experi-
mented with pruning tokens using other thresholds, such as 50% of the posts, which was
stated in the examples of R. Hence, we run a limited set of experiments with different
thresholds for pruning the tokens and obtained lower results for our performance metrics
than with 80%. Furthermore, we aim at avoiding a combinatorial explosion of experi-
ments when running all experiments with thresholds varying between 50% and 100%,
and decided to run the experiments only with and without pruning and set the pruning
threshold to 80%.

Re-balancing. Considering the distribution of the question categories presented in Table 2
in Section 3, we noticed that our data set is unbalanced. For instance, the most fre-
quently found question category API USAGE is found 537 times in 388 posts, and the
least frequently found question categories API CHANGE and LEARNING are found 80
and 46 times in 80 and 46 posts, respectively. To deal with the unbalanced dataset, we
re-balanced our training set using SMOTE (Chawla et al. 2002). SMOTE is an algorithm
that creates artificial examples of the minority category, based on the features of the k
nearest neighbors of instances of the minority category. We used the default setting of
the R implementation of SMOTE with k=5 (Torgo 2016). If the re-balancing option is
selected, SMOTE creates artificial instances of the minority category. Since we did not
use a single, multi-label classifiers for the 7 categories, but, rather, multiple binary clas-
sifiers, we applied SMOTE to re-balance the training set of each binary classifier, so that
the minority class (i.e., posts belonging to that category) and the majority class (other
posts) were balanced.

Word Count (wc). We counted the number of words considering the number of words
from the title and the body of the posts.

Code-Snippets (code). During the preprocessing of the posts, we check whether a post
contains a code snippet, meaning a part of the text that is enclosed by the tags <code>
and </code> and contains more than one word.

Readability (read). To obtain the readability of the posts, we computed various readability
metrics, such as the Flesch-Kincaid readability, the Automated Readability Index, and
the SMOG Index. The Flesch-Kincaid readability estimates the complexity of texts, the
Automated Readability Index indicates the age of the audience that would understand the
text, and the SMOG Index estimates the years of education that are needed to understand
the text (Mc Laughlin 1969; Kincaid et al. 1975).

Empirical Software Engineering

Sentiment (senti). We counted the words in the title and body of the posts that refer to
very negative, negative, neutral, positive, and very positive sentiments using the Natural
Language ToolKit’s package for sentiment analysis (Loper and Bird 2002).

Overall, we obtained 1,312 different configurations of our input data: 320 when TXT is
used, 160 when POS is used, and 832 different configurations when COMBI is used. We
used each configuration to compute a model for each of the 7 question categories.

5 Results

In this section, we first describe the results of the classification using the regex approach.
Second, we report the results of the best performing classification models of RF and SVM.

5.1 Results Using the Regex Approach

Table 3 shows the results of our regex approach to classify posts into question categories.
With this results, we can answer our research question RQ-2.1 What is the performance of
our regex approach for classifying Stack Overflow posts into the 7 question categories? as
follows: With the regex approach, we can classify a post into the correct question category
with an average precision, recall, and MCC of 0.91, 0.91, and 0.68, respectively. We favor a
high precision over a high recall, since we aim at labeling posts and we argue that we better
do not assign a label to a post than label many posts wrongly. Hence, the recall of the TRUE
category is low with an average of 0.69 across all question categories.

5.2 Results of the Automated Classification with Machine Learning Algorithms

As described in Section 4.3, we experimented with 1,312 various configurations to classify
posts into the 7 question categories using the machine learning algorithms RF and SVM.
However, we focus on the presentation of the best configurations using RF and SVM with
the full text and the phrases as input setting. Hence, we first describe how we determined the
best configuration and then, we present the results using the best configurations and answer
research question RQ-2.2.

5.2.1 Determining the Best Configuration

To determine the best configuration for classifying posts into our seven question categories,
we used the following approach:

We computed the models for each question category and each configuration with both
machine learning algorithms (RF and SVM), first, using the full text and, second, using the
phrases of the posts as input for training the models. For testing, we always used the full
text of the posts, since the goal is to classify a post and not the single phrases of it. Overall,
we performed 7 (categories) × 1,312 (configurations) × 2 (RF or SVM) × 2 (full text or
phrases) = 183,680 experiments. Also, we ran each of these experiments 20 times using the
stratified sampling described before. We limited the number of runs to 20, because such
a large number of experiments took several weeks to compute on machines with 128 GB
RAM and 48 cores or 755 GB Ram and 80 cores.

For each experiment, we computed the performance metrics accuracy, precision, recall,
f-score, AUC, and MCC averaged over the 20 runs.

Empirical Software Engineering

Ta
bl
e
3

Pe
rf
or
m
an
ce

of
th
e
re
ge
x
ap
pr
oa
ch

fo
re

ac
h
qu
es
tio

n
ca
te
go
ry

C
at
eg
or
y

ac
c

A
U
C

M
C
C

pr
ec

a
v
g

re
c a

v
g

f a
v
g

pr
ec

T
re
c T

f T
pr
ec

F
re
c F

f F

A
PI

C
H
A
N
G
E

0.
97

0.
80

0.
66

0.
97

0.
97

0.
97

0.
75

0.
61

0.
67

0.
97

0.
97

0.
97

A
PI

U
S
A
G
E

0.
89

0.
88

0.
76

0.
89

0.
89

0.
89

0.
85

0.
86

0.
85

0.
89

0.
89

0.
89

C
O
N
C
E
P
T
U
A
L

0.
86

0.
83

0.
65

0.
86

0.
86

0.
86

0.
74

0.
75

0.
74

0.
86

0.
86

0.
86

D
IS

C
R
E
PA

N
C
Y

0.
82

0.
77

0.
56

0.
81

0.
82

0.
81

0.
75

0.
63

0.
68

0.
81

0.
82

0.
81

L
E
A
R
N
IN

G
0.
98

0.
81

0.
73

0.
98

0.
98

0.
98

0.
86

0.
63

0.
73

0.
98

0.
98

0.
98

E
R
R
O
R
S

0.
94

0.
89

0.
81

0.
93

0.
94

0.
93

0.
90

0.
80

0.
85

0.
93

0.
94

0.
93

R
E
V
IE

W
0.
90

0.
75

0.
60

0.
89

0.
90

0.
89

0.
82

0.
52

0.
64

0.
89

0.
90

0.
89

ab
ov
e
av
er
ag
e

0.
91

0.
82

0.
68

0.
91

0.
91

0.
90

0.
81

0.
69

0.
74

0.
91

0.
91

0.
90

Empirical Software Engineering

To determine the best performing configuration out of the 1,312 configurations of input
type (TXT, POS, COMBI), stop words (T, F), pruning (T, F), n-grams (ntxt , npos), re-
sampling (T, F), readability (T, F), sentiments (T, F), code-snippets (T, F), and word count
(T, F), we used the MCC as trade-off between precision and recall for both sides of the
classification. Although the AUC is often recommended for assessing the performance of a
(binary) classifier, it does not always work well for unbalanced datasets. Instead, the MCC
is more stable for unbalanced datasets since it considers the amount of positive and neg-
ative instances. Furthermore, in contrast to the f-score, it shows only high scores if the
classification for both, the positive and negative instances, show good results (Chicco 2017).

Then, we compared the results obtained by using the full text and the phrases as input
for RF and SVM and selected the configuration that shows the best performance.

5.2.2 Results Using the Full Text

In the first experiment, we used the full text of the posts and computed the models with RF
and SVM for each of the seven question categories. Table 4 shows the configurations and
performance values for each question category with the highest weighted average MCC on
20 runs obtained with RF. Table 5 shows the results obtained with SVM.

The results show that RF uses different inputs and configurations for obtaining the
classification models with the best performance.

In contrast, the configurations to obtain the best models with SVM do not vary that
much. For instance, the best models obtained with SVM all use COMBI as input type with
resampling of the data. Furthermore, 6 out of 7 classifiers don’t consider the information
about code snippets and don’t remove stopwords.

Comparing the values for the MCC, the best models obtained with both, RF and SVM,
show an overall MCC of 0.39 and 0.42, respectively. This is also shown by the results per
question category, since SVM outperforms RF for the categories API CHANGE, DISCREP-
ANCY, LEARNING, and REVIEW in terms of MCC. Although RF shows on average better
scores for precision (+0.03), recall (+0.02), and AUC (+0.02), we consider SVM slightly
RF, showing a higher score for MCC (+0.03) which is considered as more stable than the
other metrics concerning the classification of positive and negative instances (Chicco 2017).

5.2.3 Results Using the Phrases

In the second experiment, we used the phrases of the posts to train the classification models.
As for the previous experiment, we used the full text of the posts for testing the classifier
because our goal is to classify a post based on its full text and not on its phrases. Tables 6
and 7 show the configurations of the best performing models and the results obtained with
RF and SVM averaged over the 20 runs.

For RF, the configurations that lead to the highest MCC and differs per question category.
For instance, RF obtains the best performance for the question categories API CHANGE

using the COMBI input type. For the other categories RF obtains the best performance using
the TXT as input. The POS input does not lead to the highest MCC for any category. In
contrast, the models of SVM show the highest MCC when the dataset is resampled but not
pruned and the sentiments aren’t considered. Furthermore, the models of SVM show a better
MCC when the COMBI input type is used with ntxt=1 and npos=3 for 5 out of 7 categories.

Comparing the performance of the models computed with RF and SVM, the average
MCC of the RF models over all categories is 0.59 and higher than the average MCC of the
SVM models, which is 0.33. Also the values of the other performance metrics obtained by

Empirical Software Engineering

Ta
bl
e
4

B
es
tc
on
fi
gu
ra
tio

n
an
d
pe
rf
or
m
an
ce

ov
er

20
ru
ns

us
in
g
R
F
w
ith

th
e
fu
ll
te
xt

as
in
pu
t

C
at
eg
or
y

Ty
pe

n-
gr
am

s
sw

pr
un
e

re
-s
am

pl
e

re
ad

se
nt
i

co
de

w
c

ac
c

A
U
C

M
C
C

pr
ec

a
v
g

re
c a

v
g

f a
v
g

A
PI

C
H
A
N
G
E

po
s

1
F

F
T

T
F

F
T

0.
95

0.
80

0.
24

0.
93

0.
95

0.
94

A
PI

U
S
A
G
E

co
m
bi

n t
x
t
=

1,
n p

o
s
=

3
F

F
T

F
F

F
T

0.
86

0.
95

0.
71

0.
87

0.
86

0.
86

C
O
N
C
E
P
T
U
A
L

tx
t

2
F

T
F

F
F

F
F

0.
81

0.
87

0.
48

0.
84

0.
81

0.
78

D
IS

C
R
E
PA

N
C
Y

tx
t

2
F

F
T

F
T

F
F

0.
73

0.
81

0.
31

0.
79

0.
73

0.
65

L
E
A
R
N
IN

G
po
s

1
F

F
T

F
F

F
F

0.
96

0.
65

0.
21

0.
94

0.
96

0.
95

E
R
R
O
R
S

co
m
bi

n t
x
t
=

1,
n p

o
s
=

1
T

T
F

F
F

F
F

0.
88

0.
95

0.
64

0.
89

0.
88

0.
87

R
E
V
IE

W
co
m
bi

n t
x
t
=

1,
n p

o
s
=

3
T

T
F

T
F

F
T

0.
83

0.
71

0.
15

0.
79

0.
83

0.
76

ab
ov
e
av
er
ag
e

0.
86

0.
82

0.
39

0.
86

0.
86

0.
83

Empirical Software Engineering

Ta
bl
e
5

B
es
tc
on
fi
gu
ra
tio

n
an
d
pe
rf
or
m
an
ce

ov
er

20
ru
ns

us
in
g
SV

M
w
ith

th
e
fu
ll
te
xt

as
in
pu
t

C
at
eg
or
y

Ty
pe

n-
gr
am

s
sw

pr
un
e

re
-s
am

pl
e

re
ad

se
nt
i

co
de

w
c

ac
c

A
U
C

M
C
C

pr
ec

a
v
g

re
c a

v
g

f a
v
g

A
PI

C
H
A
N
G
E

co
m
bi

n t
x
t
=

1,
n p

o
s
=

2
F

T
T

F
F

F
T

0.
97

0.
92

0.
58

0.
96

0.
97

0.
96

A
PI

U
S
A
G
E

co
m
bi

n t
x
t
=

1,
n p

o
s
=

1
F

T
T

F
F

F
T

0.
77

0.
87

0.
52

0.
79

0.
77

0.
76

C
O
N
C
E
P
T
U
A
L

co
m
bi

n t
x
t
=

1,
n p

o
s
=

2
F

F
T

F
T

F
T

0.
77

0.
75

0.
34

0.
75

0.
77

0.
75

D
IS

C
R
E
PA

N
C
Y

co
m
bi

n t
x
t
=

1,
n p

o
s
=

2
F

F
T

T
T

F
T

0.
75

0.
77

0.
40

0.
74

0.
75

0.
74

L
E
A
R
N
IN

G
co
m
bi

n t
x
t
=

1,
n p

o
s
=

2
F

F
T

F
F

T
F

0.
95

0.
72

0.
29

0.
95

0.
95

0.
95

E
R
R
O
R
S

co
m
bi

n t
x
t
=

1,
n p

o
s
=

1
F

T
T

T
F

F
F

0.
85

0.
86

0.
55

0.
85

0.
85

0.
84

R
E
V
IE

W
co
m
bi

n t
x
t
=

1,
n p

o
s
=

3
T

F
T

T
T

F
F

0.
80

0.
72

0.
27

0.
79

0.
80

0.
79

ab
ov
e
av
er
ag
e

0.
84

0.
80

0.
42

0.
83

0.
84

0.
83

Empirical Software Engineering

Ta
bl
e
6

B
es
tc
on
fi
gu
ra
tio

n
an
d
pe
rf
or
m
an
ce

ov
er

20
ru
ns

us
in
g
R
F
w
ith

th
e
ph

ra
se
s
as

in
pu
t

C
at
eg
or
y

Ty
pe

n-
gr
am

s
sw

pr
un
e

re
-s
am

pl
e

re
ad

se
nt
i

co
de

w
c

ac
c

A
U
C

M
C
C

pr
ec

a
v
g

re
c a

v
g

f a
v
g

A
PI

C
H
A
N
G
E

co
m
bi

n t
x
t=
1,
n p

o
s
=3

T
F

T
T

T
T

F
0.
96

0.
92

0.
67

0.
97

0.
96

0.
97

A
PI

U
S
A
G
E

tx
t

2
F

T
F

F
T

F
T

0.
86

0.
93

0.
71

0.
86

0.
86

0.
86

C
O
N
C
E
P
T
U
A
L

tx
t

2
F

T
T

T
T

T
T

0.
85

0.
86

0.
58

0.
84

0.
85

0.
84

D
IS

C
R
E
PA

N
C
Y

tx
t

1
F

F
F

F
F

T
F

0.
76

0.
86

0.
52

0.
80

0.
76

0.
77

L
E
A
R
N
IN

G
tx
t

1
T

T
T

F
F

T
T

0.
96

0.
91

0.
56

0.
97

0.
96

0.
96

E
R
R
O
R
S

tx
t

1
T

T
F

T
T

F
T

0.
90

0.
94

0.
69

0.
90

0.
90

0.
89

R
E
V
IE

W
co
m
bi

n t
x
t=
1,
n p

o
s
=3

F
F

F
T

F
T

T
0.
80

0.
82

0.
43

0.
84

0.
80

0.
81

ab
ov
e
av
er
ag
e

0.
87

0.
89

0.
59

0.
88

0.
87

0.
87

Empirical Software Engineering

Ta
bl
e
7

B
es
tc
on
fi
gu
ra
tio

n
an
d
pe
rf
or
m
an
ce

ov
er

20
ru
ns

us
in
g
SV

M
w
ith

th
e
ph

ra
se
s
as

in
pu
t

C
at
eg
or
y

Ty
pe

n-
gr
am

s
sw

pr
un
e

re
-s
am

pl
e

re
ad

se
nt
i

co
de

w
c

ac
c

A
U
C

M
C
C

pr
ec

a
v
g

re
c a

v
g

f a
v
g

A
PI

C
H
A
N
G
E

co
m
bi

n t
x
t
=

2,
n p

o
s
=

3
F

F
T

T
F

F
T

0.
85

0.
81

0.
22

0.
93

0.
85

0.
89

A
PI

U
S
A
G
E

co
m
bi

n t
x
t
=

1,
n p

o
s
=

3
F

F
T

F
F

F
F

0.
75

0.
82

0.
48

0.
80

0.
75

0.
71

C
O
N
C
E
P
T
U
A
L

co
m
bi

n t
x
t
=

1,
n p

o
s
=

3
F

F
T

F
F

F
T

0.
68

0.
78

0.
38

0.
77

0.
68

0.
70

D
IS

C
R
E
PA

N
C
Y

co
m
bi

n t
x
t
=

1,
n p

o
s
=

3
T

F
T

F
F

F
T

0.
59

0.
78

0.
35

0.
76

0.
59

0.
59

L
E
A
R
N
IN

G
co
m
bi

n t
x
t
=

1,
n p

o
s
=

3
F

F
T

T
F

F
T

0.
83

0.
82

0.
29

0.
95

0.
83

0.
87

E
R
R
O
R
S

co
m
bi

n t
x
t
=

1,
n p

o
s
=

3
T

F
T

F
F

T
T

0.
81

0.
78

0.
34

0.
83

0.
81

0.
75

R
E
V
IE

W
tx
t

n
=

3
T

F
T

T
F

F
T

0.
83

0.
63

0.
26

0.
82

0.
83

0.
79

ab
ov
e
av
er
ag
e

0.
76

0.
77

0.
33

0.
84

0.
76

0.
76

Empirical Software Engineering

the RF models are higher than the values of the SVM models. Comparing the MCC per
question category, the RF models outperform the SVM models for each category. This is
also true for all the other performance metrics, except for the accuracy and recall of the
models for the question category REVIEW where the models of SVM show a slightly better
performance (+0.03 each). In sum, training the models using the phrases of the posts as
input, the models trained with RF outperform the models trained with SVM.

5.2.4 Results with the Best Performing Configuration

To determine the best configuration for classifying posts into the seven question categories,
we compare the best performing models obtained with RF and SVM based on their perfor-
mance metrics. With an overall average precision of 0.88, recall of 0.87, and MCC of 0.59,
the models trained with RF using the phrases as input text clearly stand out.

This finding also holds for all MCC for each question category with one exception: the
best models trained with RF and the full text and RF and the phrases perform equally in
classifying posts into the question category API CHANGE (see Tables 4 and 6).

Based on these results, the configurations shown in Table 6 are considered as the best
configurations to classify posts into the seven question categories.

To reduce the bias that might have been introduced by selecting the training and test data
using the stratified sampling approach, we recomputed the classification models with the
best configurations obtained with the RF and phrases of the posts from before 100 times
instead of 20 times and answer research question RQ-2.2 What is the performance of our
best supervised machine learning model to classify Stack Overflow posts into the 7 question
categories?: Using RF with phrases as input, we can classify posts correctly into the seven
question categories with an average precision, recall, and MCC of 0.87, 0.87, and 0.54,
respectively.

Table 8 reports the performance values of the classification models averaged on 100 runs,
including detailed performance values for classT and classF .

6 Evaluation of the Classifiers

In this section, we compare the performance of the regex approach, the performance of the
RF and phrases, and the Zero-R classification. Finally, we evaluate the regex approach and
the RF and phrases model on an independent data set and present the answer to RQ-2.

6.1 Comparison of the Regex Approach and RF to Zero-R

The Zero-R classifier simply assigns each post to the majority class. Therefore, it is often
used as a baseline for comparing the performance of different machine learning algorithms.
We applied the 1,000 posts to the Zero-R classifier and report the results in Table 9. For the
comparison with the regex approach and RF, we consider the results presented in Tables 3
and 8.

When comparing the averaged values of all three approaches we found that both the RF
and the regex approaches clearly outperform the Zero-R classifier.

The MCC for the Zero-R classifier for all categories is 0, hence RF and regex clearly out-
perform this classifier with values of 0.54 and 0.68, respectively. Also the other performance
metrics show, that Zero-R is outcut by the other classifiers. The RF shows a higher over-
all average accuracy (acc) of +0.06, AUC of +0.38, average precision (precavg) of +0.22,

Empirical Software Engineering

Ta
bl
e
8

R
es
ul
ts
pe
rq

ue
st
io
n
ca
te
go
ry

re
ru
nn
in
g
th
e
ex
pe
ri
m
en
tw

ith
R
F
an
d
ph
ra
se
s
as

in
pu
t1

00
tim

es

C
at
eg
or
y

ac
c

A
U
C

M
C
C

pr
ec

a
v
g

re
c a

v
g

f a
v
g

pr
ec

T
re
c T

f T
pr
ec

F
re
c F

f F

A
PI

C
H
A
N
G
E

0.
95

0.
90

0.
54

0.
96

0.
95

0.
95

0.
52

0.
64

0.
55

0.
98

0.
96

0.
97

A
PI

U
S
A
G
E

0.
85

0.
93

0.
68

0.
85

0.
85

0.
85

0.
83

0.
77

0.
80

0.
86

0.
90

0.
88

C
O
N
C
E
P
T
U
A
L

0.
84

0.
85

0.
56

0.
84

0.
84

0.
83

0.
79

0.
54

0.
64

0.
85

0.
95

0.
90

D
IS

C
R
E
PA

N
C
Y

0.
75

0.
84

0.
49

0.
79

0.
75

0.
75

0.
58

0.
79

0.
66

0.
88

0.
73

0.
80

L
E
A
R
N
IN

G
0.
96

0.
91

0.
49

0.
96

0.
96

0.
96

0.
53

0.
52

0.
50

0.
98

0.
98

0.
98

E
R
R
O
R
S

0.
88

0.
93

0.
64

0.
88

0.
88

0.
87

0.
88

0.
56

0.
68

0.
88

0.
98

0.
93

R
E
V
IE

W
0.
80

0.
79

0.
39

0.
82

0.
80

0.
80

0.
45

0.
58

0.
50

0.
90

0.
84

0.
87

ab
ov
e
av
er
ag
e

0.
86

0.
88

0.
54

0.
87

0.
86

0.
86

0.
66

0.
63

0.
62

0.
91

0.
91

0.
90

Empirical Software Engineering

Ta
bl
e
9

T
he

pe
rf
or
m
an
ce

of
th
e
cl
as
si
fi
ca
tio

n
of

po
st
s
us
in
g
Z
er
o-
R
fo
re

ac
h
qu
es
tio

n
ca
te
go
ry

C
at
eg
or
y

ac
c

A
U
C

M
C
C

pr
ec

a
v
g

re
c a

v
g

f a
v
g

pr
ec

T
re
c T

f T
pr
ec

F
re
c F

f F

A
PI

C
H
A
N
G
E

0.
95

0.
50

0.
00

0.
90

0.
95

0.
93

0.
00

0.
00

0.
00

0.
95

1.
00

0.
97

A
PI

U
S
A
G
E

0.
63

0.
50

0.
00

0.
39

0.
63

0.
48

0.
00

0.
00

0.
00

0.
63

1.
00

0.
77

C
O
N
C
E
P
T
U
A
L

0.
74

0.
50

0.
00

0.
55

0.
74

0.
63

0.
00

0.
00

0.
00

0.
74

1.
00

0.
85

D
IS

C
R
E
PA

N
C
Y

0.
70

0.
50

0.
00

0.
49

0.
70

0.
58

0.
00

0.
00

0.
00

0.
70

1.
00

0.
82

L
E
A
R
N
IN

G
0.
96

0.
50

0.
00

0.
93

0.
96

0.
95

0.
00

0.
00

0.
00

0.
96

1.
00

0.
98

E
R
R
O
R
S

0.
78

0.
50

0.
00

0.
61

0.
78

0.
69

0.
00

0.
00

0.
00

0.
78

1.
00

0.
88

R
E
V
IE

W
0.
83

0.
50

0.
00

0.
70

0.
83

0.
76

0.
00

0.
00

0.
00

0.
83

1.
00

0.
91

ab
ov
e
av
er
ag
e

0.
80

0.
50

0.
00

0.
65

0.
80

0.
72

0.
00

0.
00

0.
00

0.
80

1.
00

0.
88

Empirical Software Engineering

average recall (recavg) of +0.06, and average f-score (favg) +0.14. The regex approach shows
higher values for the accuracy (acc) of +0.11, AUC of +0.32, average precision (precavg) of
+0.26, average recall (recavg) of +0.11, and average f-score (favg) +0.18. For all categories,
Zero-R classifies all posts into classF considering the distribution of the labels shown in
Table 2. As a consequence, precision, recall, as well as f-score for classT are 0 and, regarding
this class, both of our approaches outperform the Zero-R classifier for each category.

For the classF , the recall of the Zero-R models is, as expected, 1.0 for all question cate-
gories and regarding this metric Zero-R outperforms both of our approaches. However, the
RF models with the best configuration as well as the regex approach perform better in terms
of precision for each of the seven question categories.

Summarizing the results, the Zero-R classifier is clearly outperformed by our approaches
using regular expressions and RF with phrases. Furthermore, the regex approach shows a
better performance than the RF classifier in average for precision, recall, and MCC with
values of 0.91, 0.91, and 0.68, respectively.

6.2 Evaluation with an Independent Sample-Set

We evaluated the performance of the regex approach and our best performing models with
an independent sample set of 110 posts that has neither been used for the refinement of the
regex approach nor for training and testing the models.

We labeled the posts following the same approach as described in Section 3.1. We aimed
at having at least 100 posts for our evaluation. Since the previous study showed that not
each post contains phrases leading to a category, we randomly sampled 120 posts related
to Android from the SO data dump. For 110 out of 120 posts we could identify at least
one phrase that indicates a question category. Hence, we used this set of 110 posts for our
evaluation.

The distribution of question categories in this data set is similar to the set of 1,000 posts
used before and described in Table 2. 49 posts were assigned to the question category API
USAGE, 37 to the category DISCREPANCY, 34 posts were assigned to the question category
ERRORS, 26 to the category CONCEPTUAL, 12 to the category REVIEW, 6 to the category
LEARNING, and 2 to the category API CHANGE.

We applied the RF model with phrases as input and the best configuration 100 times to
the 100 posts and obtained the results listed in Table 10. Additionally, we rerun the regex
with the set of unseen posts and report the results in Table 11

The results show that using the validation set, the models with RF and phrases correctly
classify posts with an average precision, recall, and MCC of 0.86, 0.86, and 0.47, respec-
tively. This confirms the results shown by the 100 runs with the initial set of 1,000 posts,
since the validation showed almost the same performance on average in terms of acc, AUC,
recavgf-score favg . For the average scores for recF and fF we observe increasing values with
+0.03 and +0.01, respectively. For the other performance metrics, we observe a decrease
in the performance, at most for MCC with -0.07 and recT with -0.06. We assume that the
decrease in the performance stems from the selection of the data in the test set. The inde-
pendent set for testing stays the same over 100 runs. In contrast, the set of 1,000 posts is
split 100 times using stratified sampling into a test and a validation set.

The results, when using the regex approach to classify the new set of posts, show the
same value for favg and fF show a slight decrease for precavg , recavg , precF and recF (-0.01
each), and a bigger decrease for MCC (-0.05), precT (-0.06), recT (-0.04), and fT (-0.05).
Regarding the question categories, we observed the biggest decrease for the category API
CHANGE and REVIEW. We manually inspected the posts of the test set that are labeled with

Empirical Software Engineering

Ta
bl
e
10

T
he

pe
rf
or
m
an
ce

of
th
e
cl
as
si
fi
ca
tio

n
on

th
e
te
st
se
to

f1
10

SO
po
st
s
us
in
g
R
F
an
d
ph
ra
se
s
as

in
pu
tt
ex
t

C
at
eg
or
y

ac
c

A
U
C

M
C
C

pr
ec

a
v
g

re
c a

v
g

f a
v
g

pr
ec

T
re
c T

f T
pr
ec

F
re
c F

f F

A
PI

C
H
A
N
G
E

0.
94

0.
95

0.
26

0.
98

0.
94

0.
95

0.
15

0.
53

0.
23

0.
99

0.
95

0.
97

A
PI

U
S
A
G
E

0.
83

0.
90

0.
65

0.
83

0.
83

0.
83

0.
83

0.
77

0.
80

0.
83

0.
87

0.
85

C
O
N
C
E
P
T
U
A
L

0.
82

0.
85

0.
43

0.
80

0.
82

0.
80

0.
70

0.
40

0.
51

0.
84

0.
95

0.
89

D
IS

C
R
E
PA

N
C
Y

0.
78

0.
82

0.
50

0.
78

0.
78

0.
77

0.
76

0.
53

0.
62

0.
79

0.
92

0.
85

L
E
A
R
N
IN

G
0.
97

0.
80

0.
62

0.
96

0.
97

0.
96

0.
79

0.
53

0.
63

0.
97

0.
99

0.
98

E
R
R
O
R
S

0.
79

0.
94

0.
48

0.
79

0.
79

0.
77

0.
78

0.
46

0.
58

0.
80

0.
94

0.
86

R
E
V
IE

W
0.
90

0.
87

0.
36

0.
88

0.
90

0.
88

0.
55

0.
31

0.
40

0.
92

0.
97

0.
94

ab
ov
e
av
er
ag
e

0.
86

0.
88

0.
47

0.
86

0.
86

0.
85

0.
65

0.
50

0.
54

0.
88

0.
94

0.
91

Empirical Software Engineering

Ta
bl
e
11

T
he

pe
rf
or
m
an
ce

of
th
e
cl
as
si
fi
ca
tio

n
on

th
e
te
st
se
to

f1
10

us
in
g
th
e
re
ge
x

C
at
eg
or
y

ac
c

A
U
C

M
C
C

pr
ec

a
v
g

re
c a

v
g

f a
v
g

pr
ec

T
re
c T

f T
pr
ec

F
re
c F

f F

A
PI

C
H
A
N
G
E

0.
98

0.
75

0.
49

0.
98

0.
98

0.
98

0.
50

0.
50

0.
50

0.
98

0.
98

0.
98

A
PI

U
S
A
G
E

0.
86

0.
86

0.
72

0.
86

0.
86

0.
86

0.
85

0.
84

0.
85

0.
86

0.
86

0.
86

C
O
N
C
E
P
T
U
A
L

0.
82

0.
75

0.
50

0.
82

0.
82

0.
82

0.
62

0.
62

0.
62

0.
82

0.
82

0.
82

D
IS

C
R
E
PA

N
C
Y

0.
85

0.
82

0.
67

0.
85

0.
85

0.
85

0.
84

0.
70

0.
76

0.
85

0.
85

0.
85

L
E
A
R
N
IN

G
0.
98

0.
91

0.
82

0.
98

0.
98

0.
98

0.
83

0.
83

0.
83

0.
98

0.
98

0.
98

E
R
R
O
R
S

0.
87

0.
81

0.
69

0.
88

0.
87

0.
87

0.
92

0.
65

0.
76

0.
88

0.
87

0.
87

R
E
V
IE

W
0.
92

0.
70

0.
51

0.
91

0.
92

0.
91

0.
71

0.
42

0.
53

0.
91

0.
92

0.
91

ab
ov
e
av
er
ag
e

0.
90

0.
80

0.
63

0.
90

0.
90

0.
90

0.
75

0.
65

0.
69

0.
90

0.
90

0.
90

Empirical Software Engineering

API CHANGE and observed a very unusual combination of phrases that is not covered by
our regex approach yet. However, the results still confirm our findings of research question
RQ-2.1.

Comparing the RF models with the regex approach, we observe that for MCC, favg ,
recT , and fT the regex approach shows the better results for all question categories. For the
accuracy (acc), precavg , and recavg , again the regex approach holds better scores over all
question categories but the acc and precavg of the category CONCEPTUAL, and the precavg
of API CHANGE. Furthermore, the regex approach outperforms the RF models also in terms
of precision precT , except for the category CONCEPTUAL, whereas RF obtained higher
values. Regarding precF , recF , and fF , we observe that the RF slightly outperforms the
regex approach, which is also shown in the average values for recF , and fF . Furthermore,
RF shows better values for the AUC. However, the AUC metric considers the “confidence”
of the model that a post belongs to a category (e.g., 68%). To that end, it happens that
the AUC values of Table 10 are higher because the decisions were clearer (e.g., with a
higher confidence). However, this does not affect the number of correct classifications. In
contrast, MCC only uses the decision (TRUE or FALSE) for the calculation and ignores
the confidence. Hence, it can happen that a model with a higher MCC value can achieve
a lower AUC value on the same data set. However, according to Chicco et al., the MCC
is considered to be more stable performance metric in a binary classification task (Chicco
2017). Hence, we choose to make our decisions based on the MCC values and select the
regex approach as the best performing classifier.

Based on these results, we present the answer to research question RQ-2 ”To what extent
can we automatically classify Stack Overflow posts into the 7 question categories?”: Apply-
ing an new data set to the regex approach that is not used for the validation of the classifier
before, we can automatically classify posts with an average precision, recall, and MCC of
0.90, 0.90, and 0.68.

For further details about the evaluation, we refer the reader to our supplementary material
(Beyer et al. 2019).

7 Question Categories of Android Related Questions on SO

In this section, we apply the best performing classification approach i.e., the regex approach,
to the whole data set of Android-related posts to answer our third research question. We
use the SO data dump as of September 2017. This data dump contains a total of 1,052,568
posts that are tagged with android. We conducted this experiment to get insights into the
distribution of the question types over all Android-related posts. We used the regex approach
to classify each of the 1,052,568 posts. After this step, we investigated how many posts each
post was assigned and to which categories each post was assigned.

Table 12 shows the number of posts that were assigned to the respective question cat-
egory using the regex approach. All the columns sum up to the total number of studied
posts of 1,052,568. However, the sum of the rows does not necessarily sum up to the num-
ber of total posts, because a post can be assigned to zero to seven question categories. We
see that the category with the most assigned posts is API USAGE containing 376,294 posts
(36%), directly followed by the DISCREPANCY category with 276,984 (26%), and the CON-
CEPTUAL category having 231,180 (22%) assigned posts. Comparing the relative values
of the TRUE row to the relative values of the manual classification shown in Table 2 in
Section 2, we see that the distribution of the classification with the regex approach is similar

Empirical Software Engineering

Ta
bl
e
12

N
um

be
ro

fp
os
ts
cl
as
si
fi
ed

in
to

th
e
re
sp
ec
tiv

e
qu
es
tio

n
ca
te
go
ry

C
at
eg
or
y

A
PI

C
H
A
N
G
E

A
PI

U
S
A
G
E

C
O
N
C
E
P
T
U
A
L

D
IS

C
R
E
PA

N
C
Y

L
E
A
R
N
IN

G
E
R
R
O
R
S

R
E
V
IE

W

T
R
U
E

23
,8
73

37
6,
29
4

27
6,
98
4

21
1,
30
4

21
,1
29

20
0,
21
8

70
,8
05

2%
36
%

22
%

26
%

2%
19
%

7%

T
R
U
E

5%
39
%

27
%

31
%

4%
23
%

17
%

m
an
ua
l

FA
L
SE

1,
02
4,
50
3

69
9,
24
1

82
5,
36
7

84
1,
26
4

1,
02
0,
85
7

91
2,
42
0

1,
01
2,
84
4

97
%

64
%

78
%

80
%

97
%

87
%

96
%

Empirical Software Engineering

but more restrictive. Each of the categories has less assigned posts compared to the manual
classification.

As one post can be assigned to more than one category, we also investigated the number
of categories that a post was assigned. We find that 242,087 posts were not assigned to
any of the seven question categories. Although one could argue that this is a flaw of the
approach, we argue that this is expected because we only assign a category to a post if the
regular expressions give enough indication. Furthermore, 501,278 posts were assigned to a
single question category, 238,742 to two categories, and 60,903 to three. Only 8,804 posts
were assigned to four categories, 728 to five, and 26 posts to six categories. No post was
assigned to all of the categories. The majority (76%) of the posts is assigned to 1-3 question
categories and the posts that were assigned to 4-6 categories make less than 1% of all posts.

In the following, we give examples of posts and their respective categorization. We start
with the example in Fig. 2 that shows the post with the ID 13767705. This post was classi-
fied in all of the question categories except the category DISCREPANCY. This classification
is reasonable because in the title, we find the phrase ”handle database upgrading and ver-
sioning” which indicates the category API CHANGE. Furthermore, we find in the text the
phrase ”how to handle” which indicates API USAGE, the phrases ”Is there any documen-
tation on” which indicate LEARNING, the phrase ”Is there any best practice” indicating
CONCEPTUAL, the phrase ”that gives error” indicating ERRORS, and ”Here’s the relevant
code I am using” indicating REVIEW. We see that it is possible and reasonable that a post
can be assigned to several question categories.

As a second example, we present the post with the ID 17485804 depicted in Fig. 3. This
post has not been assigned to any of the categories. If we investigate the contents of the post,
we recognize that the author apparently asks a very generic question (”Any help?”) and also
lacks a detailed description of her problem or question. As described in the manual analysis
Section 3, this post was excluded from the manually labeled data set because also manually
no category could be assigned.

Additionally to the investigation of the classified categories, we also study the posts that
were assigned to more than one category in more detail. Specifically, we investigate whether
we can find patterns in the assignments i.e., question categories that often occur together.

Fig. 2 Question 8910089 from SO. This post was classified in every question category but documentation

Empirical Software Engineering

Fig. 3 Question 17485804 from SO. This post could not be assigned to any question category

With this analysis, we aim at two targets. First, we can validate the taxonomy and find
starting points for refinements of the taxonomy. For example, if two question categories
occur together frequently, we need to check whether they are distinctively defined or if they
overlap. Second, we aim at identifying posts that concern multiple targets. This can further
be used to assist developers when asking questions on SO by indicating that they address
more than one concern in their posts, for example.

We used the well-known apriori algorithm (Agrawal 1993, 1994) to perform the associ-
ation rule analysis and we measure the performance of the found rules with the support and
confidence metrics. Support expresses the ratio of which the rule can be found in the data
set and confidence expresses the ratio in which the rule is correct. Recent research (Le and
Lo 2015) suggests to include additional metrics for finding and evaluating association rules,
such as lift and odds-ratio. However, we are not interested in a fine-grained analysis of the
performance measures and rules, but we aim at verifying that there is no huge overlap in
the question categories i.e., very high support and confidence of a rule. Therefore, we argue
that it is sufficient to use support and confidence for our purpose. We first investigate rules
of size two (i.e., A => B) and then validate the findings by investigating also rules of size
three (i.e., A,B => C).

In total, we found 21 rules, 18 binary rules and three tertiary rules. Table 13 depicts
the binary rules with support > 0.05 and the three tertiary rules. First, we see that the
support and confidence are not high which indicates that the rules are not very frequently
occurring. This observation indicates that the question categories are not overlapping too
much. Second, we see that there are pairs of rules that follow the patternA => B andB =>

A which indicates that the two categories often occur together. Furthermore, we can see that
the rules form transitive dependencies. For example, DISCREPANCY => API USAGE =>

ERRORS form a transitive relation between three question categories. This indicates that
these three question categories often occur together. Indeed, we can find these rules in the
tertiary rules depicted in Table 13. The support of 0.02 in each of the three rules indicates
that in 2% of the rules of size three, we can find this relationship.

Based on these results, we present the answer RQ-3 ”How are the question cate-
gories distributed across all Android-related posts and to how many categories are posts
assigned?” with: The most frequently used question category is API USAGE with 376,294
posts, followed by DISCREPANCY (279,984), and CONCEPTUAL (231,180). This finding
confirms also the results of RQ-2. Furthermore, we found that the majority of the posts is
classified in one to three categories. We observed that the question categories are mostly not
overlapping. The strongest relationship between the question categories is the co-occurrence
of the three categories DISCREPANCY, API USAGE, and ERRORS.

Empirical Software Engineering

Table 13 Frequently co-occurring question categories

ID lhs rhs Support Confidence

Binary rules

1 DISCREPANCY => API USAGE 0.10 0.30

2 API USAGE => DISCREPANCY 0.10 0.22

3 ERRORS => DISCREPANCY 0.09 0.38

4 DISCREPANCY => ERRORS 0.09 0.27

5 CONCEPTUAL => API USAGE 0.09 0.31

6 API USAGE => CONCEPTUAL 0.09 0.19

7 ERRORS => API USAGE 0.06 0.23

8 API USAGE => ERRORS 0.06 0.12

9 CONCEPTUAL => DISCREPANCY 0.06 0.21

10 DISCREPANCY => CONCEPTUAL 0.06 0.18

tertiary rules

11 DISCREPANCY,ERRORS => API USAGE 0.02 0.26

12 API USAGE,ERRORS => DISCREPANCY 0.02 0.44

13 API USAGE,DISCREPANCY => ERRORS 0.02 0.24

8 Discussion

In this section, we first summarize and discuss our results, followed by the applications and
implications of our results on the automated classification of posts into question categories.
Then, we discuss the threats to the validity of our study.

8.1 Interpretation of Results

In this paper, we manually classify 1,000 posts into question categories and marked 2,192
phrases (words, parts of a sentence, or sentences) that indicate a question category. Based
on this set of 1,000, we implement two approaches to automate the classification of posts
into question categories. The first approach uses regular expressions based on patterns in
the phrases. The second approach uses machine learning algorithms RF and SVM. Also, we
experiment with 1,312 configurations of the input settings to classify posts. We validate the
regex approach and the models of the best performing configuration on an independent val-
idation set of 100 posts that was neither used for the implementation of the regex approach
nor for training and testing of the models. The results showed that using the best perform-
ing approach, namely the regex approach, we can correctly classify posts into question
categories with an average precision, recall, and f-score of 0.90, 0.90, and 0.90, respectively.

Before the extension to 1,000 posts, we performed the experiments with 500 posts. When
comparing the results from the RF, we found a slight decrease in performance (-0.01 for
AUC and -0.01 for favg) when running the experiments with 1,000 posts. This holds also for
the validation with the independent data set (-0.04 for AUC and -0.03 for favg). We assume
that with the new labeled data we added also more noise to the dataset and hence, the per-
formance decreased. Regarding the regex approach, the results with 1,000 posts remained
the same or showed a slight improvement (+0.01 for AUC and +0.00 for favg), whereas the
results with the validation set were clearly better (+0.13 for AUC and +0.05). We argue that

Empirical Software Engineering

with the adaption of the regex classifier to the set of 1,000 posts, more patterns are covered
and hence also the results with the validation set improved.

To gain more insights into the questions in the posts and to further evaluate the regex
approach, we used this approach to classify the 1,052,568 questions on Stack Overflow that
are related to Android app development. We found that the majority of the posts are classi-
fied into the question categories API USAGE, DISCREPANCY, and CONCEPTUAL. However,
there are more than 23,000 posts that deal with problems due to changes in the API and
more than 21,000 posts where developers ask for more tutorials and documentation, show-
ing the need of developers for more support for learning APIs and how to deal with changes
in the APIs. Furthermore, we found that the majority of posts are labeled with 1 to 3 ques-
tion categories, however, there are many questions that are not classified into any question
category and 26 posts that were labeled with 6 question categories. We investigated the
posts that were assigned to more than one category in more detail and found that there is no
particular pair of categories that occur frequently together. We conclude that the seven cate-
gories are well separated. Furthermore, a manual inspection of the posts showed that even a
classification into 6 question categories may be reasonable, while a post without a question
category is often very vague and imprecise, so that it is often not clear what the questioner
wants to know. Hence, our classifier could recommend posts that should be revised since
the intention of the person asking the question is not clear. Furthermore, the results showed
that our categories have a little overlap, which indicates that the distinction between the cat-
egories is clear, while a large overlap would have shown the need to refine the taxonomy of
question categories.

8.2 Applications and Implications

In the following, we discuss the applications and implications of our approaches and results
for researchers and developers.

For researchers Researchers can benefit from our approach and results to classify posts
into the seven question categories.

For instance, our approach could help to improve existing code recommender systems
using SO, such as Seahawk and Prompter from Ponzanelli et al. (2013, 2014). Indeed, our
approach could allow recommender systems to filter the posts according to the seven ques-
tion categories, and thereby improve the accuracy of their recommendations. Exemplary,
when a recommender system suggests posts based on the exceptions that a developer got,
our approach can limit the set of recommended posts to posts with the question category
ERRORS.

Furthermore, our approach can improve existing research on analyzing and identifying
topics discussed on SO posts, such as presented in Barua et al. (2012), Beyer and Pinzger
(2016), and Linares-Vásquez et al. (2013). While these approaches mainly focus on the
technologies and topics that are discussed, with our question categories, an orthogonal view
on the topics discussed on SO is provided, namely the reason why the question is asked.
This enables researchers to investigate the relationships between topics and reasons and
thereby study the what and why of discussions on SO. This means that researchers can ana-
lyze which questions are specific for which topics and hence, this enables them to address
these problems more appropriately. In addition, our analysis of the frequently co-occurring
categories showed that the categories are mostly well separated. However, the results of
RQ3 indicate that further research to refine the categories should start with the categories
that often occur together, i.e., DISCREPANCY, API USAGE, and ERRORS.

Empirical Software Engineering

For developers Furthermore, our approach can be integrated into SO helping software
developers and API developers. SO could add a new type of tag, indicating the question cat-
egory of a post. Using our approach, the posts can be tagged automatically with question
categories. As stated by Wu et al. (2018), developers aim to better organize information in
Q&A forums to increase the search efficiency. Hence, our approach can directly address
this gap by supporting software developers searching for posts not only by topics but also
by question categories.

Moreover, API developers could benefit from our approach when searching for starting
points to improve their APIs and investigating the challenges of software developers that use
the APIs. For instance, problems related to exception handling that often lead to issues in
mobile apps (Coelho et al. 2015; Zhang and Elbaum 2014) can be found in posts of the cate-
gory ERRORS. Discussions related to the change of APIs can be found by searching for posts
of the category API CHANGE. Additionally, API developers can consider the posts tagged
with the question category LEARNING as a starting point when improving and supplement-
ing the documentation and tutorials on their APIs. Considering our results, developers can
benefit from a feature on Stack Overflow that indicates that a post has not been assigned
to a category. We argue that posts that do not belong to a category should be rephrased to
increase the chance to receive a proper answer.

8.3 Threats to Validity

Threats to construct validity include the choice of spaCy of Omran and Treude (2017)
to compute the part-of-speech tags. This threat is mitigated by the fact that spaCy is the
approach with the highest accuracy, namely 90%, on data from SO. Another threat concerns
the usage of binary classification instead of multi-label classification. However, Read et al.
(2011) stated that binary classification is often overseen by researchers although it can lead
to high performance. It also scales to large datasets and has less computation complexity.

Threats to internal validity concern the selection of the posts used for manual labeling.
We randomly selected 1,000 posts and identified 2,192 phrases that indicate a question
category. The initial dataset consisted of 10 posts of the API CHANGE question category
and 15 posts of the LEARNING question category. In comparison to the other categories,
this number of posts is low, therefore, we decided to label additional posts. Since we found
only 10 posts in 500 posts for the API CHANGE category, there was no chance to label as
many posts as we would need to get an equal size of posts per category. Hence, we decided
to label posts until there were at least 30 posts for each category. This allowed us to perform
the labeling in a reasonable time and to draw our conclusions for this categories with 80%
confidence and 12% margin of error.

For each of the question categories API USAGE, CONCEPTUAL, DISCREPANCY and
ERRORS, we found more than 385 phrases in the final dataset, which allows us to draw
conclusions for these categories with 99% confidence and with 7% margin of error. For the
category REVIEW, we found 229 phrases, which enables us to conclude that our results hold
with 95% confidence and with 6.5% margin of error. For API CHANGE, we identified 80
phrases and for LEARNING 46 which allows us to draw conclusions for these categories with
confidence level of 90% and 80%, respectively, and with a margin of error of 10%, each.
Moreover, we are aware that the number of phrases to identify the categories API CHANGE

and LEARNING could be enlarged.
To get an equally high number of phrases such as for REVIEW, we would need to inves-

tigate 5 times more posts, which we consider as a task for future work. Moreover, we argue

Empirical Software Engineering

that we focus on the large question categories, such as API USAGE, CONCEPTUAL, and
ERRORS and hence, we consider the confidence level and margin of error which that we can
make our conclusions over all categories is sufficient.

Regarding the independent sample set that we used for the evaluation of our approaches,
the selected posts of the categories API USAGE, DISCREPANCY, and ERRORS are represen-
tative with 80% confidence and 10% margin of error, the posts for CONCEPTUAL with 80%
and 11%, the category REVIEW with 80% and 20%, and the API CHANGE and doc with
80% and 35%. We are aware that this limits the validation of our approach, however, we
consider the evaluation of our approaches with a bigger data set for future work.

Furthermore, the manual categorization of the posts could be biased. To address this
threat, we used the question categories obtained from prior studies and had two researchers
to label the posts separately. Then, we computed the inter-rater agreement and let the two
researchers discuss and converge on conflicting classifications.

Threats to external validity concern the generalizability of our results. While we used
SO posts related to Android to perform our experiments, our seven question categories have
been derived from several existing taxonomies that considered posts from various operating
systems and other posts on SO. As a result, our question categories apply to other domains.

Another threat concerns the evaluation of our approaches to automate the categorization
of posts. For the machine learning algorithms, we trained and tested the models with 1,000
posts from SO. We mitigated this threat, first, by applying randomized stratified sampling
to divide the data set for training and testing and second, by testing the models with an inde-
pendent sample set of manually labeled 110 posts. Regarding the regex approach, we used
the set of 1,000 posts to obtain the regular expressions which could lead to an over-fitting of
the classifier. We are also aware that the possibility of overseen patterns exists. However, to
address this threat, we also evaluated this approach with the independent sample set and by
manually investigating randomly selected posts. The evaluation of the regex approach with
more independent will be addressed in future work. This supports that our classifiers are
valid for the domain of Android posts. For other domains, the classification models might
need to be retrained and the regex approach might need some adaption. However, this is
subject to our future work.

9 RelatedWork

Several researchers have leveraged SO posts to investigate the nature of questions asked by
software developers.

Treude et al. (2011) were the first ones investigating the question categories of posts of
SO. In 385 manually analyzed posts, they found 10 question categories: How-to, Discrep-
ancy, Environment, Error, Decision Help, Conceptual, Review, Non-Functional, Novice,
and Noise. Similarly, Rosen and Shihab (2015) manually categorized 384 posts of SO for
the mobile operating systems Android, Apple, and Windows each into three main question
categories: How, What, and Why. Beyer and Pinzger (2014) applied card sorting to 450
Android related posts of SO and found 8 main question types: How to...?, What is the Prob-
lem...?, Error...?, Is it possible...?, Why...?, Better Solution...?, Version...?, and Device...?
Based on the manually labeled dataset, they used Apache Lucene’s k-NN algorithm to auto-
mate the classification and achieved a precision of 41.33%. Similarly, Zou et al. (2015)
used Lucene to rank and classify posts into question categories by analyzing the style of the
posts’ answers.

Empirical Software Engineering

Allamanis and Sutton (2013) used LDA, an unsupervised machine learning algorithm,
to find question categories in posts of SO. They found 5 major question categories: Do
not work, How/Why something works, Implement something, Way of using, and Learning.
Also, they found that question categories do not vary across programming languages. In
Beyer et al. (2017), Beyer et al. investigated 100 Android related posts of SO to evaluate
if certain properties of the Android API classes lead to more references of these classes
on SO. Besides some API properties, they found that the reasons for posting questions
on SO concern problems with the interpretation of exceptions, asking for documentation
or tutorials, problems due to changes in the API, problems with hardware components or
external libraries, and questions of newbies.

There exist also other approaches not related to SO that aim at the identification of
question categories asked by developers working in teams. Letovsky (1987) interviewed
developers and identified 5 question types: why, how, what, whether, and discrepancy. Fritz
and Murphy (2010) investigated the questions asked by developers within a project and pro-
vided a list of 78 that developers want to ask their co-workers. In LaToza and Myers (2010),
Latoza et al. surveyed professional software developers to investigate hard-to-answer ques-
tions. They found 5 question categories: Rationale, Intent and implementation, Debugging,
Refactoring, and History. Hou and Li (2011) analyzed newsgroup discussions about Java
Swing and present a taxonomy of API obstacles.

There is also ongoing research in topic finding on SO. Linares Linares-Vásquez et al.
(2013) as well as Barua et al. (2012) used LDA to obtain the topics of posts on SO. Linares
Vasquez et al. investigated which questions are answered and which ones not whereby Barua
et al. analyzed the evolution of topics over time. In Beyer and Pinzger (2016), Beyer et
al. presented their approach to group tag synonym pairs of SO with community detection
algorithms to identify topics in SO posts.

Several studies deal with analyzing domain-specific topics on SO. Joorabchi et al. (2013)
identified the challenges of mobile app developers by interviewing senior developers. Stud-
ies from Kartik et al. (2014), Lee et al. (2018), Martinez and Lecomte (2017), Villanes
et al. (2017), and Yang et al. (2016) as well as Mehrab et al. (Mehrab et al. 2018) investi-
gate the topics related to web development, NoSQL, cross-platform issues, security-related
questions, questions about Android testing, and questions about Django and Laravel, respec-
tively, using LDA. Zhang and Hou (2013) extracted problematic API features from Java
Swing related posts based on the sentences in the posts using the Stanford NLP library and
part-of-speech tagging. Additionally, Zhang and Hou (2013) used SVM to categorize the
content of posts related to the Java Swing API.

As pointed out by prior studies (Rosen and Shihab 2015; Beyer et al. 2017), the reasons
why developers ask questions are diverse and need to be considered to get further insights
into the problems developers face. Although existing studies (Allamanis and Sutton 2013;
Beyer and Pinzger 2014; Rosen and Shihab 2015; Treude et al. 2011) already aimed at
addressing this issue, they present diverse taxonomies of question categories that only partly
overlap with each other. Among them, there are two approaches that propose an automated
classification of posts into question categories. The approach presented by Allamanis and
Sutton (2013) is based on LDA, an unsupervised machine learning approach. The precision
of this approach cannot be evaluated. The approach by Beyer and Pinzger (2014) uses k-NN
showing a low precision of only 41.33%.

Recent research fromWu et al. (2018) shows that there is a demand to improve the search
efficiency of developers by optimizing information enhancement and management, as well
as data organization. Li et al. (2018) present CnCxL2R, a recommender API documentation

Empirical Software Engineering

that uses the information of the official documentation of APIs and the posts of Stack
Overflow to return a ranked list of API documentation.

In this paper, we analyze the existing taxonomies and harmonize them to one taxonomy.
We argue that a post can belong to more than one question category and hence, we allow
multi-labeling. Similarly to prior studies (Beyer and Pinzger 2014; Rosen and Shihab 2015;
Treude et al. 2011), we start with a manual classification of the posts. However, to the
best of our knowledge, we are the first ones that additionally mark the phrases (words,
parts of sentences, or sentences) that indicate a question category and leverage them in the
automated classifier. Also, our approach helps to structure the data of Stack Overflow which
can consequently help to improve the search efficiency of developers on Stack Overflow.

10 Conclusions

In this paper, we investigate how Android app developers ask questions on SO, and to what
extent we can automate the classification of posts into question categories. As a first step,
we compared the taxonomies found by prior studies (Allamanis and Sutton 2013; Beyer
et al. 2017, 2014; Rosen and Shihab 2015; Treude et al. 2011) and harmonized them into
seven question categories. Then, we manually classified 1,000 posts into the question cate-
gories and found that most of the questions belong to the question categories API USAGE,
CONCEPTUAL, and DISCREPANCY. Additionally, we marked 2,192 phrases (words, part of
a sentence, or sentences) that indicate a question category.

Then, we used the manually created data set to automate the classification of posts into
question categories with a binary classification model instead of a multi-label classification.
Hence, we built a classifier for each category separately. We implemented two approaches
to automatically classify posts.

In the first approach, we implemented a classifier based on regular expressions. We
derived the regular expressions by analyzing the recurrent patterns in the phrases and
combining them to regular expressions.

In the second approach, we build models of (RF) and (SVM) to classify posts. To obtain
the best configuration for the models of RF and SVM, we computed the models for each
category in 1,312 combinations varying the input data, input representation, as well as
the preprocessing of the text in terms of stop word removal, pruning, using n-grams, and
re-sampling of the data. Additionally, we take into account the length of the posts, the
readability score, the sentiment score, and whether the posts contain code snippets. We com-
pared the performance of the models and found, that across all categories, RF with phrases
as input data showed the best classification performance.

We evaluated our approaches in two steps. First, we compared them with the Zero-R
classifier, where a post is classified into the majority category. Second, we applied the regex
approach and the RF on an independent data set of 110 posts that were neither used for
deriving the regular expressions, nor for training and testing the models. The results showed
that both classifiers clearly outperform the Zero-R classifier. Furthermore, the evaluation
with the independent data set showed that the regex approach outperforms the RF with an
average precision and recall of 0.90 and 0.90, respectively.

To further evaluate our best performing approach, we used the regex approach to label
all Android-related questions that are contained in the SO data dump from September 2017.
We investigated how the question categories are distributed over the 1,000 questions. We
found that the majority of the posts are labeled with 1 to 3 categories and that the question
categories are mostly not overlapping.

Empirical Software Engineering

The implications of our findings on the classification of contributions into the seven
question categories concern researchers and developers.

With the question categories, researchers can have an additional view on the problems
of software developers, detached from the technical problems that are addressed by the tags
of the posts. This may help researchers to improve SO based recommender systems or to
investigate the topics of discussions from a different point of view.

Furthermore, integrated on SO, our approach could on the one hand help developers to
find solutions easier and on the other hand enable API developers to better identify issues
with their APIs.

For future work, we consider the extension of our approach to a multi-label classification
and compare the results to the classification of Beyer and Pinzger (2014) directly. Also, we
plan to improve the classifier by considering account additional features, such as the tags of
the posts. Also, it could be possible to automatically learn regular expressions from a set of
analyzed, manually-labeled posts. Furthermore, we plan to combine the question categories
with approaches that extract the topics that are discussed on SO to investigate the what
and why of discussions in more detail. Finally, we plan to evaluate our approach on other
domains than Android. After that, we plan to collect feedback from the SO community in
order to possibly integrate the approach in the SO querying features.

Acknowledgments Open access funding provided by University of Klagenfurt.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases.
In: International conference on management of data. ACM, pp 207–216

Agrawal R, Srikant R et al (1994) Fast algorithms for mining association rules. In: Proceedings of the
International Conference of Very Large Data Bases, vol 1215, pp 487–499

Allamanis M, Sutton C (2013) Why, when, and what: Analyzing stack overflow questions by topic, type, and
code. In: Proceedings of the Working Conference on Mining Software Repositories. IEEE, pp 53–56

Barua A, Thomas S, Hassan AE (2012) What are developers talking about? an analysis of topics and trends
in Stack Overflow. Empir Softw Eng 19:1–36

Beyer S, Pinzger M (2014) A manual categorization of android app development issues on Stack Overflow.
In: Proceedings of the International Conference on Software Maintenance and Evolution. IEEE, pp 531–
535

Beyer S, Pinzger M (2016) Grouping android tag synonyms on Stack Overflow. In: Proceedings of the
Working Conference on Mining Software Repositories. IEEE, pp 430–440

Beyer S, Macho C, Di Penta M, Pinzger M (2017) Analyzing the relationships between android api classes
and their references on stack overflow. Technical report, University of Klagenfurt University of Sannio

Beyer S, Macho C, Pinzger M, Di Penta M (2018) Automatically classifying posts into question categories
on stack overflow. In: Proceedings of the International Conference on Program Comprehension. ACM,
pp 211–221

Beyer S, Macho C, Di Penta M, Pinzger M (2019) qc replication package.zip. https://doi.org/10.6084/m9.
figshare.8870123.v1

Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Chaparro O, Lu J, Zampetti F, Moreno L, Di Penta M, Marcus A, Bavota G, Ng V (2017) Detecting miss-

ing information in bug descriptions. In: Proceedings of the Joint Meeting on Foundations of Software
Engineering. ACM, pp 396–407

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.8870123.v1
https://doi.org/10.6084/m9.figshare.8870123.v1

Empirical Software Engineering

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling
technique. J Artif Intell Res 16:321–357

Chicco D (2017) Ten quick tips for machine learning in computational biology. BioData Min 10(1):35
Coelho R, Almeida L, Gousios G, van Deursen A (2015) Unveiling exception handling bug hazards in android

based on github and google code issues. In: Proceedings of the Working Conference of Mining Software
Repositories. IEEE, pp 134–145

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bullet 76(5):378
Fritz T, Murphy GC (2010) Using information fragments to answer the questions developers ask. In:

Proceedings of the International Conference on Software Engineering. ACM, pp 175–184
Fu W, Menzies T (2017) Easy over hard: a case study on deep learning. In: Proceedings of the Joint Meeting

on Foundations of Software Engineering. ACM, pp 49–60
Hou D, Li L (2011) Obstacles in using frameworks and apis: an exploratory study of programmers’ news-

group discussions. In: Proceedings of the International Conference on Program Comprehension. IEEE,
pp 91–100

Joorabchi ME, Mesbah A, Kruchten P (2013) Real challenges in mobile app development. In: Proceedings
of the International Symposium on Empirical Software Engineering and Measurement. ACM/IEEE, pp
15–24

Kartik B, Karthik P, Ali M (2014) Mining questions asked by web developers. In: Proceedings of theWorking
Conference on Mining Software Repositories. ACM

Kincaid JP, Fishburne Jr RP, Rogers RL, Chissom BS (1975) Derivation of new readability formulas
(automated readability index fog count and flesch reading ease formula) for navy enlisted personnel

Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In:
Ijcai, Montreal, vol 14, 1137–1145

LaToza TD, Myers BA (2010) Hard-to-answer questions about code. In: Evaluation and usability of
programming languages and tools. ACM, pp 8

Le TDB, Lo D (2015) Beyond support and confidence: Exploring interestingness measures for rule-based
specification mining. In: Proceedings of the International Conference on Software Analysis, Evolution
and Reengineering. IEEE, pp 331–340

Lee M, Jeon S, Song M (2018) Understanding user’s interests in nosql databases in stack overflow. In:
Proceedings of the International Conference on Emerging Databases. Springer, pp 128–137

Letovsky S (1987) Cognitive processes in program comprehension. J Syst Softw 7(4):325–339
Li J, Xing Z, Kabir A (2018), Leveraging official content and social context to recommend software

documentation. IEEE Transactions on Services Computing
Linares-Vásquez M, Dit B, Poshyvanyk D (2013) An exploratory analysis of mobile development issues

using stack overflow. In: Proceedings of the Working Conference on Mining Software Repositories.
IEEE Press, pp 93–96

Loper E, Bird S (2002) Nltk: The natural language toolkit. In: Inproceedings of the ACLWorkshop on Effec-
tive Tools andMethodologies for Teaching Natural Language Processing and Computational Linguistics.
Philadelphia: Association for Computational Linguistics

Martinez M, Lecomte S (2017) Discovering discussion topics about development of cross-platform mobile
applications using a cross-compiler development framework. arXiv:1712.09569

Mc Laughlin GH (1969) Smog grading-a new readability formula. J Read 12(8):639–646
Mehrab Z, Bin Yousuf R, Tahmid IA, Rifat S (2018) Mining developer questions about major web frame-

works. In: Proceedings of the International Conference on Web Information Systems and Technologies.
SciTePress, pp 191–198

Omran FNAA, Treude C (2017) Choosing an nlp library for analyzing software documentation: a systematic
literature review and a series of experiments. In: Proceedings of the International Conference on Mining
Software Repositories, pp 187–197

Ponzanelli L, Bacchelli A, Lanza M (2013) Seahawk: stack overflow in the ID. In: Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, pp 1295–1298

Ponzanelli L, Bavota G, Di Penta M, Oliveto R, Lanza M (2014) Mining stackoverflow to turn the ide into a
self-confident programming prompter. In: Proceedings of the Working Conference on Mining Software
Repositories. ACM, pp 102–111

Porter MF (1997) An algorithm for suffix stripping. In: Sparck Jones K, Willett P (eds) Readings in
information retrieval. Morgan Kaufmann Publishers Inc, pp 313–316

Powers DM (2011) Evaluation: from precision, recall and f-measure to roc, informedness markedness and
correlation

Read J, Pfahringer B, Holmes F, Frank E (2011) Classifier chains for multi-label classification. Mach Learn
85(3):333

http://arXiv.org/abs/1712.09569

Empirical Software Engineering

Rosen C, Shihab E (2015)What are mobile developers asking about? a large scale study using stack overflow.
Empir Softw Eng 21:1–32

Scalabrino S, Bavota G, Russo B, Oliveto R, Di Penta M (2017) Listening to the crowd for the release
planning of mobile apps. IEEE Transactions on Software Engineering

Torgo L (2016) Data mining with r: learning with case studies. CRC Press, Boca Raton
Treude C, Barzilay O, Storey MA (2011) How do programmers ask and answer questions on the web? (NIER

Track). In: Proceedings of the International Conference on Software Engineering. ACM, pp 804–807
Villanes IK, Ascate SM, Gomes J, Dias-Neto AC (2017) What are software engineers asking about android

testing on stack overflow?. In: Proceedings of the Brazilian Symposium on Software Engineering. ACM,
pp 104–113

Villarroel L, Bavota G, Russo B, Oliveto R, Di Penta M (2016) Release planning of mobile apps based on
user reviews. In: Proceedings of the International Conference on Software Engineering. ACM, pp 14–24

Wen J, Sun G, Luo F (2016) Data driven development trend analysis of mainstream information technologies.
In: Proceedings of the International Conference on Service Science. IEEE, pp 39–45

Wu Y, Wang S, Bezemer CP, Inoue K (2018) How do developers utilize source code from stack overflow?
Empir Softw Eng 24:1–37

Yang X, Lo D, Xia X, Wan Z, Sun J (2016) What security questions do developers ask? a large-scale study
of stack overflow posts. J Comput Sci Technol 31(5):910–924

Zhang Y, Hou D (2013) Extracting problematic api features from forum discussions. In: Proceedings of the
International Conference on Program Comprehension. IEEE, pp 142–151

Zhang P, Elbaum S (2014) Amplifying tests to validate exception handling code: an extended study in the
mobile application domain. ACM Trans Softw Eng Methodol 23(4):32

Zou Y, Ye T, Lu Y, Mylopoulos J, Zhang L (2015) Learning to rank for question-oriented software text
retrieval. In: Proceedings of the International Conference on Automated Software Engineering. IEEE,
pp 1–11

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Stefanie Beyer is a PostDoc assistant in the Software Engineering Research Group at the Alpen-Adria Uni-
versität Klagenfurt in Austria. In 2013, she received a MSc in Software Enginnering and Internet Computing
from the Technical University of Vienna and in 2018, she received a PhD in Informatics from the Alpen-
Adria Universität Klagenfurt, both with distinction. Her PhD thesis was supervised by Prof. Martin Pinzger.
Her research interests include mining software repositories, program analysis, and software evolution.

Empirical Software Engineering

Christian Macho is a PostDoc assistant in the Software Engineering Group (SERG) at the Alpen-Adria-
Universität Klagenfurt. He received his MSc from the Technical University Vienna in March 2015 and
his PhD from the Alpen-Adria-Universität Klagenfurt in 2019 both with distinction. His research inter-
ests include software evolution, mining software repositories, program analysis, build systems, continuous
integration, automated repair, and empirical studies in software engineering.

Massimiliano Di Penta is an associate professor at the University of Sannio, Italy. His research interests
include software maintenance and evolution, mining software repositories, empirical software engineering,
search-based software engineering, and service-centric software engineering. He is an author of over 270
papers appeared in international journals, conferences, and workshops. He serves and has served in the orga-
nizing and program committees of more than 100 conferences, including ICSE, FSE, ASE, ICSME. He is in
the editorial board of the Empirical Software Engineering Journal edited by Springer, ACM Transactions on
Software Engineering and Methodology, and of the Journal of Software: Evolution and Processes edited by
Wiley, and has served the editorial board of the IEEE Transactions on Software Engineering.

Empirical Software Engineering

Martin Pinzger is a full professor at the University of Klagenfurt, Austria where he is heading the Software
Engineering Research Group. His research interests are in software evolution, mining software repositories,
program analysis, software visualization, and automating software engineering tasks. He is a member of
ACM and a senior member of IEEE.

Affiliations

Stefanie Beyer1 ·Christian Macho1 ·Massimiliano Di Penta2 ·Martin Pinzger1

Christian Macho
christian.macho@aau.at

Massimiliano Di Penta
dipenta@unisannio.it

Martin Pinzger
martin.pinzger@aau.at

1 University of Klagenfurt, Klagenfurt, Austria
2 University of Sannio, Sannio, Italy

	What kind of questions do developers ask on Stack Overflow?
	Abstract
	Introduction
	A taxonomy of Question Categories
	API usage
	Discrepancy
	Errors
	Review
	Conceptual
	API change
	Learning

	Manual Classification
	Experimental Setup
	Results

	Setup of the Automated Classification
	General Settings
	Binary Classifier
	Data set
	Performance

	Experimental Setup of the Regex Approach
	Experimental Setup Using Machine Learning Algorithms

	Results
	Results Using the Regex Approach
	Results of the Automated Classification with Machine Learning Algorithms
	Determining the Best Configuration
	Results Using the Full Text
	Results Using the Phrases
	Results with the Best Performing Configuration

	Evaluation of the Classifiers
	Comparison of the Regex Approach and RF to Zero-R
	Evaluation with an Independent Sample-Set

	Question Categories of Android Related Questions on SO
	Discussion
	Interpretation of Results
	Applications and Implications
	For researchers
	For developers

	Threats to Validity

	Related Work
	Conclusions
	References
	Affiliations

