
Grouping Android Tag Synonyms on Stack Overflow

Stefanie Beyer

Software Engineering Research Group

University of Klagenfurt

Austria

stefanie.beyer@aau.at

Martin Pinzger

Software Engineering Research Group

University of Klagenfurt

Austria

martin.pinzger@aau.at

ABSTRACT
On Stack Overflow, more than 38,000 diverse tags are used
to classify posts. The Stack Overflow community provides
tag synonyms to reduce the number of tags that have the
same or similar meaning. In our previous research, we used
those synonym pairs to derive a number of strategies to cre-
ate tag synonyms automatically.

In this work, we continue this line of research and present
an approach to group tag synonyms to meaningful topics.
We represent our synonyms as directed, weighted graphs,
and investigate several graph community detection algorith-
ms to build meaningful groups of tags, also called tag com-
munities.

We apply our approach to the tags obtained from Android-
related Stack Overflow posts and evaluate the resulting tag
communities quantitatively with various community met-
rics. In addition, we evaluate our approach qualitatively
through a manual inspection and comparison of a random
sample of tag communities. Our results show that we can
cluster the Android tags to 2,481 meaningful tag communi-
ties. We also show how these tag communities can be used
to derive trends of topics of Android-related questions on
Stack Overflow.

CCS Concepts
•Information systems ! Clustering;

Keywords
Stack Overflow, Tags, Android, Clustering

1. INTRODUCTION
Stack Overflow provides tagging of questions, a service of

Web 2.0 to informally label and classify data [23, 25]. In the
last years, researchers have performed various studies with
the posts of Stack Overflow. For instance, they investigated
trends and topics [3], the reasons for closed or unanswered

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’16, May 14-15, 2016, Austin, TX, USA
c� 2016 ACM. ISBN 978-1-4503-4186-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901739.2901750

questions [6, 10, 22], as well as question types and prob-
lem types discussed on Stack Overflow [20, 4]. Often they
used tags as a starting point for their studies. However, as
found by Barua et al. [3], the tags of Stack Overflow are too
fine-grained and often have the same or similar meaning.
Addressing this problem, Barua et al. [3] manually grouped
related tags to meaningful topics. Similarly, Rosen et al.
[20] also started with a manually selected group of related
tags to study topics of Android app development. While
manually grouping a small set of tags is feasible, we argue
that grouping more than 38,000 tags, which is the number
of tags on Stack Overflow at the time of September 2014, is
not.

Regarding the similar meaning of tags, the community of
Stack Overflow allows privileged users with a reputation of
> 1, 500 to suggest tag synonyms to reduce the amount of
redundant tags. Stack Overflow defines: “A tag synonym is
usually a tag that has exactly the same meaning as some
other tag, such as algorithm and algorithms. In some
cases, tags that are subsets of other tags will also be consid-
ered synonyms, such as java-se for java.”1 If other privi-
leged users vote for a synonym, it is approved and may be
used for tagging. However, in September 2014 there were
only 2, 765 manually suggested tag synonym pairs on Stack
Overflow which is a small amount compared to more than
38,000 existing tags on Stack Overflow.

In our previous research [5], we analyzed the approved tag
synonym pairs created by the Stack Overflow community
and derived several strategies, implemented in the TSST
approach, to compute synonym pairs automatically. In this
paper, we continue this line of research and aim at group-
ing related tags, meaning tag synonym pairs, to topics au-
tomatically. The main research question addressed in this
paper is: To which extent can we group tag synonym pairs
to meaningful topics using an automated approach?

To automate the approach, we represent tag synonym
pairs as a directed, weighted graph and use clustering and
community detection algorithms to group them. Since there
exist many clustering and community detection algorithms,
we first investigate which algorithms fit our needs best. We
apply the set of algorithms provided by the igraph pack-
age [7] of R to our data set. The data set consists of the tag
synonym pairs provided by Stack Overflow and the tag sy-
nonym pairs obtained by applying TSST to Android-related
tags on Stack Overflow. We find that the walktrap commu-
nity detecting algorithm fits our needs best.

1http://meta.stackexchange.com/questions/70710/
what-are-tag-synonyms-and-merged-tags-how-do-they-work

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 430

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 430

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 430

Second, using the same data set, we perform several ex-
periments with the walktrap community detection algorithm
to determine the most appropriate configuration of the algo-
rithm for grouping synonym pairs to tag communities. For
this, we evaluate the resulting tag communities quantita-
tively and qualitatively. Regarding the quantitative eval-
uation, we measure several properties of tag communities,
such as the maximum and minimum sizes of communities,
and the number of communities of size one, two, or greater
than 30. For the qualitative evaluation, we manually inves-
tigate the communities of randomly selected tags obtained
by various configurations of the walktrap algorithm. Com-
bining the results of both evaluations, we find that using tag
synonym pairs with a ranking � 0.55 as input and setting
the step size of the walktrap algorithm to 3 outputs the most
meaningful communities. Finally, using this configuration,
we show an application of our approach to derive trends of
hot topics related to Android app development.

Summarized, this paper makes the following contributions:

� A comparison of community detection algorithms to
find meaningful communities of tag synonyms on Stack
Overflow

� A quantitative and qualitative evaluation of the com-
munities obtained by various configurations of the al-
gorithm and input data

� An application of the results by deriving trends of hot
topics of Android-related posts on Stack Overflow

The remainder of this paper is organized as follows. In
Section 2, we briefly introduce TSST and discuss the struc-
ture of tag synonym pairs. In Section 3, we introduce the
definitions of communities and tag communities and present
the criteria for selecting a community detection algorithm.
In Section 4 and Section 5, we evaluate the various con-
figurations of the community detection algorithm and the
resulting tag communities. In Section 6, we apply our ap-
proach to tag synonym pairs obtained from Android-related
tags on Stack Overflow and in Section 7, we discuss the re-
sults and their limitations, as well as the threats to validity.
Related work is presented in Section 8. In Section 9, we
present conclusions and directions for future work.

2. TAG SYNONYM SUGGESTION TOOL
In this section, we briefly describe the Tag Synonym Sug-

gestion Tool (TSST) for creating tag synonyms and the set
of improvements made over the previous version of TSST
presented in [5].

2.1 TSST Approach
In TSST, each tag synonym pair consists of a target tag

and a source tag, representing the master-synonym relation-
ship of tag synonyms on Stack Overflow. Note, the source
tag has not necessarily the same meaning as the target tag
and is also allowed to be a subset of the target tag. The tar-
get tag is defined to be the more generic tag and the source
tag to be the more specific one.1 A target tag may be the
source tag of another synonym pair and source tags may also
be target tags in other synonym pair relationships. Tag sy-
nonym pairs can build a hierarchy, however, synonym pairs
are not bidirectional.

TSST generates tag synonym pairs through applying sev-
eral strategies that we derived by manually analyzing the ap-
proved tag synonym pairs of Stack Overflow. For instance,
TSST uses the strategy Stemming to match tags by their
stem, such as clustered-indexing and clustered-index,
or the strategy Metaphone to match tags by their pronunci-
ation, such as tchart and teechart. Other strategies used
by TSST are Synonym-In-Tag, Synonym-In-Word, Similar-
ity, Acronym, DotSharpMinusPlus, Abbreviations/Synony-
ms, and Numbers. TSST applies the strategies in the order
from restrictive to general. Starting with the most restrictive
strategy Stemming, the strategies Numbers, DotSharpMi-
nusPlus, Synonym-In-Tag, Synonym- In-Word, Acronym,
Similarity, and Metaphone are applied. For more details on
the strategies and TSST, we refer the reader to our paper
[5].

With TSST we can generate tag synonym pairs of various
quality, meaning that the source tag is actually a synonym
or subset of the target tag. For this, we compute a ranking
between 0.0 and 1.0 for each synonym pair. A ranking of 1.0
means the likelihood of two tags forming a valid synonym
pair according to TSST is 100%. In the previous version
of TSST, the ranking of the suggested synonyms is based
on the count of strategies that output the same synonym
pair. There we assumed, the more strategies generate the
same synonym pair, the more likely it is indeed a valid tag
synonym pair. In the evaluation with the 2,765 approved
synonym pairs of Stack Overflow, TSST showed to correctly
generate 88.4% of the synonym pairs.

2.2 TSST Improvements
Compared to the previous version of TSST presented in

[5], we improved the ranking of tag synonym pairs, as well
as several strategies to compute synonym pairs. Regarding
the ranking, our manual evaluation showed that the quality
of the tag synonym pairs mainly depends on the strategy
used to create a synonym pair. For instance, a tag synonym
pair created by the strategy Stemming is more likely to be a
valid synonym pair than a synonym pair created with Meta-
phone, where the matching is based on the pronunciation
of the words. Therefore, we refined the ranking of the sug-
gested tag synonyms and based it mainly on the strategy
used to build a tag synonym. Furthermore, we still consider
the number of strategies that generate the same synonym
pair and add the average position of the target tag in Stack
Overflow posts to compute the ranking. Regarding the po-
sition of tags, we found that the first tag in a post is more
general than the last one. For instance, the generic tag an-
droid is the first tag in more than 80% of the posts tagged
with android.

Regarding the strategies, we refined the implementation of
the strategies Numbers and DotSharpMinusPlus that in the
new version cover more combinations and variations of tag
synonyms. The strategies Synonym-In-Tag, Synonym-In-
Word, and Acronym were also refined to improve the ranking
that strongly depends on the strategies. We supplemented
the strategy Synonym-In-Tag with Synonym-in-Tag-Subtag
and Synonym-In-Tag-Like.

In the previous version, the tag synonym pairs cluster-
indexing and indexing, abstract-method and static-me-

thod, and html5-video and videoview are all created by
the strategy Synonym-In-Tag. In the new version, the first
synonym pair is created with the original strategy Synonym-

431431431

In-Tag, the second one with Synonym-In-Tag-Subtag, and
the last one with Synonym-In-Tag-Like.

We also supplemented the strategy Synonym-In-Word with
Synonym-In-Word-Like to di↵er between the creation of tag
synonym pairs, such as qtmultimedia and time, and thread-
ing and multithreading. A synonym pair is created with the
original strategy Synonym-In-Word, if one tag starts or ends
with an other tag, such as threading and multithreading. A
synonym pair is created with Synonym-In-Word-Like, if a
tag occurs in the middle of another word, such as qtmulti-
media and time.

Finally, we supplemented the strategyAcronym withAcro-
nym-Start-Or-End andAcronym-Combination. For instance,
synonym pairs, such as command-line-interface and cli, and
user-interface and ui belong to the original strategyAcronym.
webcontrol and webbrowser-control are created withAcronym-
Combination, since webcontrol is a combination of the first
parts of the pots (part of tags) of webbrowser-control. The
strategy Acronym-Start-Or-End matches tags where the a-
cronym of one tag is the start or end of another tag, such as
ie7-bug and internet-explorer-7.

The order in which the strategies are applied is the same
as in the previous version of TSST. However, when calcu-
lating the ranking, the supplementing strategies get a lower
ranking than synonyms generated by the original strategy,
since we found that they often lead to synonym pairs of lower
quality (see for instance the previous example qtmultimedia
and time).

To evaluate the improvements of TSST, we randomly se-
lected 100 tag synonym pairs computed with tags from Stack
Overflow and spot-checked them manually. When calculat-
ing the coverage of the generated synonym pairs, the re-
sults showed that the new version generates 88.7% of the
approved tag synonym pairs correctly. This is a small im-
provement of only 0.03%, however the supplementing strate-
gies help to more accurately determine the ranking of tag
synonym pairs.

3. TAG COMMUNITIES
Our goal is to group tag synonym pairs into meaningful

topics. For this, our basic approach is to represent the tag
synonym pairs obtained by TSST as a directed and weighted
graph and apply clustering and community detection algo-
rithms to the graph. In the following, we first introduce basic
graph definitions, as well as definitions for communities and
tag communities. Furthermore, we present the criteria for
selecting community detection algorithms.

3.1 Definitions
We use the definitions of directed, weighted graphs and

paths from Cuvelier et al. [8]. A directed, weighted graph
G = (V,E) consists of a non-empty set V of vertices, and
a set E of directed edges between the vertices E ✓ (u, v)|
u, v 2 V . Each directed edge (u, v) 2 E has a start vertex
u, and an end vertex v. We do not allow self-loops in our
tag synonym pairs, so that E ✓ {(u, v)|u, v 2 V ^ u 6= v}.
Furthermore, a function ! : E ! R exists that assigns a
weight to each edge.

The in-degree of a vertex v, denoted as deg

�(v), is the
number of edges directed at v. A subgraph G

0 = (V 0
, E

0) of
a graph G = (V,E) is a graph such that V 0 ⇢ V,E

0 ⇢ E and
(u, v) 2 E

0 implies u, v 2 V

0. The graph G is a super-graph
of G

0. A subset C of V can define an induced subgraph

G(C) = (C,E(C)), where E(C) = {(u, v) 2 E|u, v 2 C}.
For a directed graph G = (V,E), an integer n � 0, and
vertices u, v 2 V , a path (or walk) of length n from u to v in
G is a sequence of vertices and edges x0, e1, x1, e2, ..., xn, en,

such that x0 = u and xn = v, and such that ei = (xi�1, xi) 2
E for all i 2 {1, ..., n}. Two vertices v and u are called
neighbors or adjacent, if they are connected by an edge.
The set of neighbors of a node v, denoted �(v), is called its
neighborhood.

A community C is the result of an algorithm to split a
graph G into subgraphs G0(V 0

, E

0) of vertices V 0 and edges
E

0. The vertices V

0 are strongly related to each other [9].
There exist various definitions for communities, since they
are algorithmically defined. Fortunato found that the ma-
jority of these definitions agree on that “there must be more
edges “inside” the community than edges linking vertices of
the community with the rest of the graph” [9]. In addition,
there also exists a path P between two vertices u, v 2 V, of
a community C that does not leave the community C [8].

Each tag synonym pair obtained by TSST consists of a
source-tag, a target-tag, and a ranking. With this informa-
tion, we can represent the tag synonym pairs as a directed
and weighted graph G(V,E,!). We define the union of tags
of source-tags and target-tags as vertices V of a graph G.
The direction of the edges E represent the synonym-master
relationship from source-tag (synonym) to target-tag (mas-
ter). The direction shows the hierarchy of the tag synonym
pairs. The weighting function ! of graph G represents the
ranking of tag synonym pairs.

Our goal is to split the graph G consisting of tag synonym
pairs into groups of semantically related tags. In the follow-
ing, we refer to these groups of tags as tag communities.
A tag community is a community as defined by Fortunato,
extended by adding that each community C(V,E) consists
of vertices V that are semantically related to each other.
Each tag community consists of a generic community-name
comName and a number of tags. The number of tags de-
notes the size of a community. The comName, representing
the topic of the tag community, is defined to be the name of
the node v with the maximum degree deg

�(v) of incoming
edges.

3.2 Community Detection Algorithms
Analogue to the various definitions of communities, there

are various algorithms for community detection in graphs.
We search for a community detection algorithm that fulfills
the following criteria:

� data input size: The algorithm is able to deal with
graphs consisting of more than 10, 000 vertices.

� determinism: The algorithm is deterministic.

� performance: The algorithm terminates within one
hour.

� weighting: The algorithm considers the weights of the
edges of the input graph.

� direction: The algorithm considers the direction of the
edges of the input graph.

To find an appropriate algorithm, we investigated the
community detection algorithms provided by the igraph

package for network analysis and visualization [7]. The strai-
ght forward approach to extract communities is to apply

432432432

Clustering. This algorithm computes independent subgraphs
G

0(E0
, V

0) with no connection to other vertices V outside the
subgraph. Applying this algorithm to the set of tag synonym
pairs obtained from Android-related tags, we obtained one
big cluster of size 14, 613 and two clusters of size 5 and 2.
Since we aim at having more fine-grained communities, and
not one big cluster, we excluded this algorithm for comput-
ing tag communities.

The walktrap community algorithm of Pons and Latapy
[19] is a hierarchical clustering algorithm. It takes directed
and weighted graphs as input and calculates densely con-
nected subgraphs (=communities) via random walks of a
given step size. “Two neighborhood nodes are more probable
to belong on the same community, if they can be mutually
visited by random walks starting from these nodes” [13]. The
default step size for random walks suggested by Pons and
Latapy is 4. A detailed description of the algorithm can
be found in [19]. The walktrap community algorithm deals
with large graphs, is deterministic, and deals with weighted
and directed graphs. Furthermore, applying the algorithm
to our data, we find that also the performance criteria is sat-
isfied. Therefore, this algorithm fulfills all of the predefined
criteria and we selected it for our approach.

We investigated also other community detection algorith-
ms provided by igraph, such as edge-betweenness commu-
nity, fastgreedy community, label-propagation community, le-
ading-eigenvector community, multilevelcommunity, optimal
community, and spinglass-community. Since none of them
fulfilled all our criteria we excluded these community de-
tection algorithms. For instance, the spinglass community
algorithm has a limit for the maximum number of commu-
nities, and the optimal-community algorithm is np-complete
and only works on graphs with 500 or less vertices. The al-
gorithms for fastgreedy community, leading-eigenvector com-
munity, multilevel community, and label propagation only
work on undirected graphs. The latter even produces non
deterministic results without an initial setting for each ver-
tex. We also excluded the edge betweenness community al-
gorithm for performance reasons. The calculation of com-
munities on a graph with more than 10, 000 vertices took
more than five hours on a standard computer with and Intel
Core i7 CPU and 16GB main memory.

4. EVALUATION OF WALKTRAP
In this section, we first present the data sets used for evalu-

ating the walktrap community detection algorithm and then
show the results obtained by running the algorithm with dif-
ferent configurations.

4.1 Data Sets
For the evaluation, we used the 12,717 tags obtained from

Android-related posts on Stack Overflow as of September
2014. We then applied TSST to these tags and stored the
1,145,882 generated tag synonym pairs in a database. For
each suggested synonym, we stored the source-tag, target-
tag, and the ranking. Furthermore, the community of Stack
Overflow provides a set of 2, 765 approved tag synonym
pairs. We added those synonym pairs to our data where
either the source tag or target tag is contained in the set of
Android-related tags, resulting in 2, 261 additional synonym
pairs and 1, 907 additional tags. Since these tag synonym
pairs have been approved by the Stack Overflow community,
we set their ranking to 1.0. Furthermore, to avoid having a

Table 1: Number of Tags and Tag Synonym Pairs of

our Input Datasets

Input Datasets rn # Tags # Tag Synonym Pairs
r0.4 13,791 97,585
r0.45 11,666 81,055
r0.5 10,374 47,880
r0.55 10,329 21,925
r0.6 10,327 20,651
r0.65 10,324 20,458

big community with the community-name android, we ex-
cluded all tag synonym pairs with the target tag android.
Finally, we obtain a dataset consisting of 14,624 (12,717 +
1,907) distinct tags.

In the next step, we manually checked a random selected
subset of tag synonym pairs regarding the quality of their
ranking. We found that synonym pairs with a ranking <

0.40 typically are not similar and do not show a synonym-
master relationship. We filtered these synonym pairs result-
ing in a set of 97, 585 tag synonym pairs formed by 13, 791
di↵erent tags (94.30% of the 14, 624 tags).

Since the ranking of tag synonym pairs might impact
the computation of tag communities, we defined several in-
put sets with di↵erent lower bounds of rankings to allow
the analysis of this impact. In particular, we defined in-
put sets with rankings ranging from � 0.40 to � 0.65 in
step sizes of 0.05. We refer to the input sets as rn, n 2
{0.40, 0.45, 0.50, 0.55, 0.60, 0.65}, meaning the input set r0.50
contains the tag synonym pairs having a ranking from 0.50 to
1.0. We selected� 0.65 as an upper limit for the lower bound
since these synonym pairs still cover a significant amount of
the Android-related tags, namely 8, 417 of 14, 624 (57.56%).
Table 1 shows the resulting number of tags and tag synonym
pairs for each input set rn. In the following, we refer to these
input sets also as input graphs.

4.2 Configuration of the Walktrap Algorithm
The walktrap algorithm has two input parameters: The

step size for the random walks and the input graph to split
into communities. Additional to the default step size 4 for
the random walk suggested by Pons and Latapy, we ran
the community detection algorithm with step sizes of 2, 3, 5,
and 6. Regarding the input graph we used the data sets
rn, n 2 {0.40, 0.45, 0.50, 0.55, 0.60, 0.65} described in Section
4.1. To evaluate the impact of these two parameters on
the resulting tag communities, we introduce a number of
community metrics, ordered by priority p:

� #comSize1: number of communities with size 1 (p1)

� #comSize2: number of communities with size 2 (p2)

� #com > 30: number of communities with size greater
than 30 (p3)

� #com: number of communities (p4)

� maxSize: maximum size of the communities (p5)

� medianSize: median size of the communities (p6)

Since our goal is to group tag synonyms to communities,
our main criterion is to obtain communities consisting of
more than one tag, thus the values for #comSize1 should be

433433433

Figure 1: Maximum size of communities obtained

by the walktrap community algorithm

low. Similarly, the number of communities with size 2 mea-
sured by #comSize2, consisting of one tag synonym pair,
should also be low. Furthermore, we aim at minimizing the
number of communities #com. The maxSize of commu-
nities measured as number of tags contained by the largest
community should be low. Ideally, the maximum size of
communities should be 30 and the number of communities
having size > 30 should be zero. We obtained the value 30
for this threshold by manually investigating a set of 300 com-
munities computed with the six input sets and five step sizes
for 10 randomly selected tags. The main author and a PhD
student investigated separately 300 communities counting
the number of tags semantically belonging to a community
and the number of tags that do not. The results showed
that communities with a size > 30 should be split into sub-
communities. Finally, we aim at communities with many
tags and therefore, the medianSize should be maximized.

In a first experiment to investigate the maximum size of
communities, we applied the walktrap community detection
algorithm with step sizes from 2 to 6 to the input graphs r0.40
to r0.65. Figure 1 shows the maximum size of communities
obtained for each step size and input graph. Depending on
the ranking, the lowest maximum size of a community is
221 tags for step size 2 and input graph r0.50 and the size of
the largest community is 1, 927 tags for step size 6 and input
graph r0.40. These results clearly show that none of the used
step sizes and input data sets leads to a result that satisfies
our criteria for the maximum size of communities. To split
the communities further into communities with a maximum
size of 30, we came up with the approach to recursively apply
the walktrap community detection algorithm until there was
no remaining community with size > 30, or the community
could not be split any more. We named this approach WT-
REC.

Figure 2 shows the maximum size of communities com-
puted with the WT-REC approach using the di↵erent step
sizes and input graphs. Compared to the results shown in
Figure 1 the maximum size of communities is significantly
lower. In particular, for the input graphs from r0.55 to r0.65

the maximum size of communities is between 30 and 45. The
charts in Figure 3 show several metrics of the communities

Figure 2: Maximum size of communities obtained by

the recursive walktrap community algorithm (WT-

REC)

obtained by WT-REC with step sizes 3, 4, and 5 (numerical
values are listed in Table 2). They show that the values of
the metrics #com, #com > 30, as well as #comSize1 and
#comSize2 remain almost constant for the input graphs
r0.55 to r0.65. Figure 4 shows that the step size mainly in-
fluences the values of #com and #comSize2.

Based on these first results, we found that limiting the
maximum size of communities to 30 tags and applying the
walktrap community algorithm recursively, we can extract
tag communities that satisfy our criteria. While the values
of our community metrics di↵ered for input graphs ranging
from r0.40 to r0.55, we found that these di↵erences were small
between the input graphs r0.55, r0.60, and r0.65. As a conse-
quence, we only considered the tag communities computed
from synonym pairs with ranking � 0.55 as input graphs for
our further evaluations.

5. EVALUATION OF THE WT-REC COM-
MUNITIES

In this section, we present the results of our quantitative
and qualitative analysis of the tag communities computed
with the WT-REC algorithm. The main goal of both evalu-
ations was to determine the most appropriate configuration
for WT-REC, in terms of step size and input graph, to ob-
tain tag communities.

5.1 Quantitative Analysis of Communities
For the quantitative analysis, we evaluated the tag com-

munities based on the metrics and their priorities as intro-
duced in Section 4.2. Regarding the priorities we assigned a
weight to each community metric whereas the weights sum
up to 1.0. The most important metric is #comSize1 with
priority p1. We assigned it the weight w1 = 0.4, since we
want to minimize the number of communities that only con-
sist of a single tag. We assigned priority p2 and the weight
w2 = 0.3 to the metric #comSize2. We assigned priority
p3 and weight w3 = 0.2 to the metric #com > 30 and pri-
ority p4 and weight w4 = 0.1 to the metric #com. We also
investigated the metric medianSize and found that the me-
dian size of communities is hardly influenced by the step

434434434

(a) Step size = 3 (b) Step size = 4 (c) Step size = 5

Figure 3: Tag communities computed with WT-REC for step sizes 3, 4, and 5 for the input graphs r0.40 to r0.65

(a) Ranking � 0.55 (b) Ranking � 0.60 (c) Ranking � 0.65

Figure 4: Tag communities computed with WT-REC for the input graphs r0.50 to r0.65 and step sizes 2 to 6

size and ranking therefore skipped this metric in our quan-
titative evaluation. Furthermore, we fixed the maxSize of
communities to 30 therefore also skipped this metric for our
quantitative evaluation.

Using the weights and metric values presented in Table 2,
we computed a score sc for each input graph rk and step size
st. The scores for the input graphs rk, k 2 {0.55, 0.60, 0.65}
are computed as follows:

scrk =

|p|X

j=1

|metricj,rk | ⇤ wj

Regarding the score of an input graph rk, we first count
the number of step sizes in which that input graph obtained
the best performance for a metricj . Table 3 shows the
counts for the di↵erent input graphs. For instance, the count
for the metric comeSize1 is 1 for the input graph r0.55 since
only for step size 3 the metric value showed the best per-
formance, meaning the lowest number of communities with
only a single tag. The count for metric comeSize1 in the
column r0.60 is 2, since the two step sizes 2 and 4 showed the
best performance for the input graph r0.60. The score for an
input graph rk then is computed as the sum of the count
computed for each metric denoted as |metricj,rk | multiplied
by the corresponding weight wj of that metric.

Analogue, we calculate the score scst for each step size st.
Table 4 shows the results of the scores for each step size. For
instance, the count of #comSize1 in the column 6 is 3, since
the lowest value for #comSize1 was achieved with step size
6 for all three input graphs r0.55, r0.60, and r0.65. Similarly,
the count for #comSize2 and #com in column 6 is 3, since
the best values for #comSize2 and #com for all three input
graphs were achieved using a step size of 6. Regarding the
metric #com > 30 the best performance was achieved with
two input graphs per step size therefore the count for each
step size is 2.

The results in Table 3 and Table 4 show that he highest
scores are scrk = 2.5 for the input graph r0.60 and scst = 2.8
for the step size 6. These results suggest to use the input
graph r0.60 and step size 6 to run the walktrap community
detection algorithm.

5.2 Qualitative Analysis of Communities
To evaluate the results qualitatively, we manually ana-

lyzed the communities generated for a subset of 35 Android-
related tags from Stack Overflow. For each community, we
counted the number of tags that semantically belong to the
community and the number of tags that do not belong to
the community. Based on these two measures, we define the
best community as the community with the largest number

435435435

Table 2: Metrics of tag communities obtained with

di↵erent step sizes and input graphs of WT-REC

step size metric
input graph

r0.55 r0.60 r0.65

2

#comSize1 527 354 413
#comSize2 1079 1108 1116
#com > 30 0 2 1

#com 2849 2721 2795
maxSize 30 32 45
medianSize 2 2 2

3

#comSize1 272 275 283
#comSize2 966 951 971
#com > 30 1 1 1

#com 2481 2456 2492
maxSize 44 43 43
medianSize 3 3 2

4

#comSize1 279 232 245
#comSize2 865 836 843
#com > 30 1 1 1

#com 2369 2275 2287
maxSize 33 33 33
medianSize 3 3 3

5

#comSize1 230 209 201
#comSize2 813 815 824
#com > 30 1 1 1

#com 2249 2244 2239
maxSize 33 33 33
medianSize 3 3 3

6

#comSize1 179 195 174

#comSize2 786 798 818

#com > 30 1 1 1

#com 2129 2179 2183

maxSize 35 33 33
medianSize 3 3 3

Table 3: Scores for each input graph

j metricj wj
input graph rk

0.55 0.6 0.65
1 #comSize1 0.4 1 2 2
2 #comSize2 0.3 3 2 0
3 #com > 30 0.2 5 4 4
4 #com 0.1 1 3 1

scrk = 2.4 2.5 1.7

Table 4: Scores for each step size

j metricj wj
step size st

2 3 4 5 6
1 #comSize1 0.4 0 0 0 0 3
2 #comSize2 0.3 0 0 0 0 3
3 #com > 30 0.2 2 2 2 2 2
4 #com 0.1 0 0 0 0 3

scst = 0.4 0.4 0.4 0.4 2.8

of tags that semantically belong to the community and the
lowest number of tags that do not belong to the commu-
nity. To reduce the bias of the manual evaluation, the first
author and a PhD student separately evaluated the best
communities for each tag. Both evaluators are familiar with
Stack Overflow and are experienced with Android-related

Table 5: Number of best communities for 21 tags

using di↵erent combinations of input graph and step

size

step size
input graph P

r0.55 r0.60 r0.65

2 8 4 5 17
3 11 4 4 19

4 5 6 5 16
5 3 4 5 12
6 3 3 2 8P

25 21 21

tags. We calculated Cohen’s Kappa to measure the inter-
rater agreement.

We started with the investigation of the 10 most frequently
used tags for Android-related posts: android-layout, ec-

lipse, listview, android-intent, sqlite, android-a-

ctivity, android-fragments, xml, json, and android-

listview. Furthermore, we randomly selected the follow-
ing 25 Android-related tags: ruby-on-rails, scheduling,

interactive, django, paragraph, intervals, integer-

arithmetic, seo, shpere, abstract, knox, transitio-

n, fortify, normalization, pdf, mpeg, row, cllocat-

ion, endpoint, undo, inflate-exception, type, buff-

ered, Android-2.2, and jprogressbar. For each tag, we
investigated 15 communities for all combinations of rank-
ings from � 0.55 to � 0.65 and step sizes 2 to 6 (in total
15 ⇤ 35 = 525 communities).

Analyzing the communities, we found that the tag com-
munities output for the 7 tags paragraph, intervals, seo,

sphere, knox, cllocation, as well as undo in all settings
consist of two nodes and one connecting edge. The number
of communities of size 2 was not surprising since they ac-
count for up to 39.93% of the communities. Furthermore,
the tag communities output for the 7 tags sqlite, ruby-

on-rails, scheduling, fortify, row, Android-2.2, and
inflate-exception consist of the same nodes and edges,
independent of ranking and step size. We neglected these
14⇤15 = 210 communities for our qualitative analysis, since
they did not influence our results.

For each of the remaining 21 tags, each evaluator investi-
gated the 315 communities and counted the number of best
communities created per step size and input graph. Note,
often more than one combination of step size and ranking re-
sults in the same best community. We compared the results
from both evaluators using Cohen’s Kappa and obtained a
 = 0.88, meaning almost perfect agreement between the
two evaluators, according to the measurement of Landis et
al. [14]. The results of this analysis are listed in Table 5.

According to the results in Table 5 the combination of step
size 3 and input graph r0.55 obtained the best tag commu-
nities for 11 tags. In contrast, using the input graphs r0.60

and r0.65 as well as a step size between 4 and 6 the best
communities were obtained for only 2 to 6 tags. Also the
count of the best results per step size (19 times) or ranking
(26 times) showed that using step size 3 or the ranking r0.55

lead in all combinations to the best communities.
Figure 5 shows examples of the communities for the tags

layout, pdf, and integer to demonstrate the similarity
of tags contained by a community computed with our ap-
proach. The yellow node represents the community name de-
noting the tag with the maximum degree of incoming edges.

436436436

(a) layout (b) pdf (c) integer

Figure 5: Tag communities of layout, pdf, and integer computed with WT-REC using step size 3 and input

graph r0.55

The tag community of layout shown in Figure 5a, consists
of 14 tags and 32 edges between them, all of them belong
semantically to the tag layout. This is supported by the
fact that all tags contain the name layout as part of their
name. The tag community pdf shown in Figure 5b consists
of 10 tags and 14 edges. All tags, except of writer are se-
mantically related to the tag pdf. Finally, Figure 5c shows
the tag community integer, consisting of 6 tags and 5 edges
between the tags. As for the other two examples, the names
of the tags clearly suggest a semantic relationship with the
tag community integer.

The results of the qualitative analysis di↵er from the re-
sults obtained by the quantitative analysis. While the quan-
titative analysis showed to use the input graph r0.60 and step
size 6 to compute tag communities, the qualitative analy-
sis showed to use input graph r0.55 and step size 3. The
qualitative analysis also showed that the step size has more
influence than the input graph, meaning the ranking. The
more data we have for input, the more important is the step
size to group relevant tags.

Since we aim at grouping tags to meaningful topics and we
prioritize the accuracy of the topics over covering all tags,
we favor the results of the qualitative analysis and consider
using the input graph r0.55 and step size 3 as the best setting
for computing tag communities with WT-REC. Based on
these results, we can answer our research question: Using
the recursive walktrap community detection algorithm on the
input graph r0.55 and setting step size to 3, we can group the
21, 925 tag synonym pairs comprising 10, 329 di↵erent tags
into 2, 481 tag communities with a median size of 3 tags.
There is only 1 tag community consisting of 44 tags, 966
communities consist of two tags, and 272 of one tag.

This result also means that our approach can significantly
reduce the number of 10, 329 di↵erent Android-related tags
on Stack Overflow down to 2, 481 tag communities (24.02%).
The replication package of our study and the details of the
analysis of the communities are provided on our website.2

6. APPLICATION OF RESULTS
In the last years, several researchers used tags to invesi-

gate the topics and trends of questions on Stack Overflow.

2http://serg.aau.at/bin/view/StefanieBeyer/Data and Tools

For example, Barua et al. [3] and Rosen et al. [20] manually
grouped a manageable amount of semantically related tags
to infer trends and topics on Stack Overflow. In this exam-
ple, we show the advantages of our approach to perform this
grouping of tags automatically.

Using the Stack Overflow dump from September 2014, we
selected all 575,419 posts of Stack Overflow tagged with an-

droid and computed the tag synonym pairs with TSST. We
then computed the input graph r0.55 and used the WT-REC
algorithm with step size 3 to compute the tag communities.
Next, for each tag community, we replaced the contained
tags with the community-name tag. We then counted for
each tag community the number of new posts per month
tagged with the community-name and stored the results in
a database. In addition, we also counted the number of new
posts per month for single tags.

The 10 most frequently used tag communities are layout,
listview, eclipse, fragment, sqlite, android-intent,

android-activity, xml, service, and google-maps. Fig-
ure 6 presents the trends of new posts per month for the
6 most frequently used tag communities. For each of the
topics, the number of new posts per month (postCount) in-
creased over time. There were only a few new posts per
month for the topic fragment in the beginning of 2011. How-
ever, the interest in this topic increased and by the time of
January 2014 it has been one of the most popular topics
for new questions on Stack Overflow. The number of new
posts per month peaked in the middle of 2014. The topic
layout has been popular since the first posts on Stack Over-
flow about Android app development, which is also shown
by the number of new posts per community in Table 6. The
topic layout is followed by listview and eclipse. However,
these topics were not as popular as layout in the beginning
but increased since the middle of 2013.

To show the impact of using the tag communities, we com-
pare our results to those achieved when only using single
tags. Counting how frequently a tag is used in posts (post-
Count), we found that the tags android-layout, eclipse,

listview, android-intent, android-activity, sqlite,

android-fragments, xml, android-listview, and json a-
re most frequently used. Comparing the post count of the
top 10 most frequently used tags with the post count of the
top 10 most frequently used tag communities, we found that

437437437

Figure 6: New posts per month per tag community

Figure 7: New posts per month per single tag

Table 6: Count of posts per tag community and tag

community count tag count

layout 32,145
android-layout 25,487
layout 6,474

listview 28,047
listview 16,590
android-listview 11423

eclipse 20,161 eclipse 19,976
fragment 18,241 android-fragments 13,299
sqlite 17,144 sqlite 14,023
android-intent 15,697 android-intent 15,682
activiti 15,241 android-activity 14,251
xml 13,074 xml 11,908
service 13,022 service 4,928
google-maps 11,517 google-maps 7764

they have six topics in common. Using the tag communities,
the tags android-listview and listview are grouped into
the community listview, and android-layout and layout

are grouped into layout. Table 6 shows that we obtained
a significantly higher postCount using the tag communities
for all topics.

Figure 7 shows the trends of new posts per month for the

most frequently used tags. Comparing the trends in Figure
6 and Figure 7, we see that the most frequently used tag
community layout was not as frequently used for tagging
new posts when only considering single tags. Furthermore,
the trend of the number of new posts per month for the com-
munity fragment shows a steeper increase because it groups
tags, such as android-fragments, fragment-lifecycle,

headless-fragments, and page-fragments into one topic.
Similar observations can be made for the tag communities
listview, android-intent, and sqlite.

Overall, the comparison clearly shows, when using our
community approach, we obtain a more comprehensive and
accurate picture of the trends of Android-related topics on
Stack Overflow.

7. DISCUSSION
In this section, we summarize the results of our evalua-

tions of tag communities and discuss the threats to validity.

7.1 Summary of Results
We investigated several community detection algorithms

on graphs to group tag synonym pairs obtained by TSST to
meaningful topics. Our results show that the walktrap com-
munity algorithm fits best. We applied the algorithm recur-
sively to the graphs of tag synonym pairs with input sets
rn, n 2 {0.40, 0.45, 0.50, 0.55, 0.60, 0.65}, covering 94.30% to
57.56% of all Android-related tags to obtain reasonable large
communities. Furthermore, we varied the step size of the
walktrap community algorithm from 2 to 6.

To quantitatively evaluate the tag communities, we calcu-
lated several community metrics, such as the maximum size
of communities, or the number of communities with size 1 or
2. According to these metrics, we obtained the best results
by using the input graph r0.60 and and setting step size to
6. For the qualitative evaluation of the tag communities, we
manually investigated 525 tag communities. In contrast to
the quantitative analysis, the best results were achieved by
setting the step size to 3 and using the input graph r0.55.
Summarizing the results of both analyses, we suggest to use
the input graph r0.55 and the step size 3 to compute tag
communities with the walktrap community algorithm.

We presented one example of an application of our re-
sults to derive trends of Android-related tag communities
on Stack Overflow. This shows that manual approaches to
group tags and analyze topics, such as presented by Barua
et al. [3] and Rosen et al. [20], can be automated with
our approach. Furthermore, while in this paper we focus on
analyzing Android-related tags, our approach can be easily
applied to all tags on Stack Overflow.

7.2 Threats to Validity
Threats to internal validity concern the limitation of our

selection of community detection algorithms provided by the
igraph package of R. The algorithms we used assign each
tag exactly to one community. To address this threat, we
plan to investigate other community detection algorithms
that support multiple assignments of tags to communities.
Another threat to internal validity concerns the selection
of the tag communities of the top 10 most frequently used
Android-related tag communities for the manual inspection
that may not be representative. To address this threat, we
additionaly investigated the tag communities of 25 randomly
selected Android-related tags. Another threat to internal

438438438

validity concerns the maximum size for communities set to
30. To mitigate this threat, we investigated 300 communi-
ties of various sizes and found that communities consisting of
more than 30 tags should be split (see Section 4.2). Further-
more, the initial settings of the rankings for the input graphs
could bias the results since not all of the Android-related
tags are covered. However, we showed that the results are
mainly influenced by the step size.

Threats to external validity concern the generalizability
of the results obtained with the community detection al-
gorithm on tag synonym pairs. We applied the walktrap
community algorithm only to tag synonym pairs of Android-
related tags and the tags of the approved synonym pairs on
Stack Overflow. First, we think that the amount of Android-
related tags is su�ciently large and covers diverse aspects
of software engineering. Second, our approach can be easily
applied to other data sources, such as the tags from Stack
Exchange, to extend our studies.

8. RELATED WORK
In the past years, the interest in gaining information about

posts, topics, and trends on Stack Overflow increased. For
their investigations, researchers often used tags.

Correa et al. [6] and Lezina et al. [10] used tags to predict
closed questions on Stack Overflow. Tags are also used as
additional information by Kavaler et al. [12] to find classes
in the posts’ body and to link the posts of Stack Overflow
to code. For the investigation of crowd documentation and
API discussions, Parnin et al. [18] used the tags on Stack
Overflow. Morrison et al. [17] investigated the tags of each
user on Stack Overflow to find out if there is a relation bet-
ween programming knowledge and age. Linares-Vasquez et
al. [16, 15] used tags to filter posts related to mobile tech-
nologies, especially for Android. In our previous research,
we also used tags to filter posts on Stack Overflow, that are
related to Android app development [4]. To investigate the
topics discussed on Stack Overflow and why questions do
not get answered, Treude et al. [22] manually analyzed the
200 most frequently used tags.

Barua et al. [3] investigated the trends of topics on Stack
Overflow over time. For this, they grouped related tags man-
ually, such as iphone, iphone-sdk-3.2, iphoneapp, and
iphone-3gs. They found that single tags are too detailed
and provide too much information to us them for deriving
trends and topics on Stack Overflow. Rosen et al. [20]
approached to collect all tags related to mobile technology
posts. They first grouped tags manually and then added all
tags of posts that are tagged with a tag of the initial set of
keywords. In contrast, we presented an approach to perform
this grouping automatically on a large set of tags.
Tags have also been used in other research contexts. Wang

et al. [26] presented a similarity metric for tags of software
project hosting websites, such as Freecode. They character-
ized each tag by the document and its contents and defined
the similarity between the tags by calculating the similarity
between the documents. Furthermore, they applied the k-
menoids clustering algorithm in multiple iterations to build
a hierarchy of tag groups. Cui et al. [27] and Tsui et al.
[24] investigated taxonomies and concepts of tags. Fur-
thermore, Joorabchi et al. [11], as well as Bagheri et al.
[2] mapped tags of Stack Overflow to Wikipedia concepts.
In contrast to our approach, they use techniques, such as
Latent Semantic Analysis on documents or machine learn-

ing, investigate the co-occurrences of tags, and have other
objectives.

The investigation of related work shows that tags are fine-
grained and inconsistent. Therefore, researchers started to
group semantically related tags manually when using tags
for their investigations. In our previous research [5], we
presented TSST, a tag synonym suggestion tool that cre-
ates tag synonym pairs automatically. In this research, we
continued this line of research and investigated community
detection algorithms to group tag synonym pairs to tag com-
munities that represent groups of semantically related tags.
Although there are several approaches that use community
detection algorithms on social network graphs, such as pre-
sented in [1] and [21], we are not aware of an approach apply-
ing community detection algorithms to tag synonym pairs
to find meaningful topics. Using our approach, we can sup-
port researchers to group tags to semantically related topics
to more accurately investigate, for instance the trends and
topics on Stack Overflow with tags.

9. CONCLUSION AND FUTURE WORK
The community of Stack Overflow provides tag synonyms

to reduce the number of 38,000 diverse tags on Stack Over-
flow. In our previous research [5], we investigated the tag
synonym pairs of Stack Overflow and derived a set of strate-
gies to create tag synonyms automatically.

In this paper, we aimed at grouping these synonym pairs
to meaningful topics. For this, we represented the synonym
pairs as directed, weighted graph and investigated various
clustering and community detection algorithms to group tag
synonyms. We experimented with various input graphs and
settings for the algorithms and found that the walktrap com-
munity detection algorithm when applied recursively works
best. Furthermore, we evaluated the tag communities quan-
titatively and qualitatively and found that the most mean-
ingful tag communities can be obtained when using synonym
pairs with a ranking � 0.55 as input graph and setting the
step size of the walktrap community algorithm to 3.

Using the tag communities, we showed an example in
which we derived trends of hot topics related to Android-
app development on Stack Overflow. The example clearly
shows that the trends of new posts obtained with our tag
communities di↵er from the trends obtained by only consid-
ering single tags, since our communities cover semantically
similar tags. This has a significant impact on research and
applications that rely on single tags and it is particularly
this research and related approaches that can benefit the
most from our tag communities.

Future work is concerned with the investigation of more
community detection algorithms on graphs. In particular,
we plan to investigate community detection algorithms sup-
porting tags belonging to more than one community. We
also plan to evaluate the algorithms on a larger set of tags of
Stack Overflow. Furthermore, we plan to extend the investi-
gation of trends of Android-related topics on Stack Overflow
to further underline the value of tag communities. For in-
stance, we will calculate several metrics obtained by posts
that are grouped by tag communities.

439439439

10. REFERENCES
[1] A. Arenas, L. Danon, A. Diaz-Guilera, P. M. Gleiser,

and R. Guimera. Community analysis in social
networks. The European Physical Journal
B-Condensed Matter and Complex Systems,
38(2):373–380, 2004.

[2] E. Bagheri and F. Ensan. Semantic tagging and
linking of software engineering social content.
Automated Software Engineering, 23(2):147–190, 2014.

[3] A. Barua, S. Thomas, and A. Hassan. What are
developers talking about? an analysis of topics and
trends in stack overflow. Empirical Software
Engineering, pages 1–36, 2012.

[4] S. Beyer and M. Pinzger. A manual categorization of
android app development issues on stack overflow. In
Proceedings of the International Conference on
Software Maintenance and Evolution, pages 531–535.
IEEE, 2014.

[5] S. Beyer and M. Pinzger. Synonym suggestion for tags
on stack overflow. In Proceedings of the International
Conference on Program Comprehension, pages 94–103.
IEEE, 2015.

[6] D. Correa and A. Sureka. Fit or unfit: analysis and
prediction of ’closed questions’ on stack overflow. In
Proceedings of the Conference on Online Social
Networks, pages 201–212. ACM, 2013.

[7] G. Csardi and T. Nepusz. The igraph software package
for complex network research. InterJournal, Complex
Systems:1695, 2006.

[8] E. Cuvelier and M.-A. Aufaure. Business Intelligence:
First European Summer School, chapter Graph Mining
and Communities Detection, pages 117–138. Springer,
2012.

[9] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3):75–174, 2010.

[10] E. L. Galina and A. M. Kuznetsov. Predict closed
questions on stackoverflow. Proceedings of the
Researchers Colloquium on Databases and Information
Systems, pages 10–14, 2013.

[11] A. Joorabchi, M. English, and A. E. Mahdi.
Automatic mapping of user tags to wikipedia
concepts: The case of a q&a website–stackoverflow.
Journal of Information Science, pages 570–583, 2015.

[12] D. Kavaler, D. Posnett, C. Gibler, H. Chen,
P. Devanbu, and V. Filkov. Using and asking: Apis
used in the android market and asked about in
stackoverflow. In Social Informatics, pages 405–418.
Springer, 2013.

[13] D. Lai, H. Lu, and C. Nardini. Extracting weights
from edge directions to find communities in directed
networks. Journal of Statistical Mechanics: Theory
and Experiment, 2010(06):P06003, 2010.

[14] J. R. Landis and G. G. Koch. The measurement of
observer agreement for categorical data. biometrics,
pages 159–174, 1977.

[15] M. Linares-Vásquez, G. Bavota, M. Di Penta,

R. Oliveto, and D. Poshyvanyk. How do api changes
trigger stack overflow discussions? a study on the
android sdk. In Proceedings of the International
Conference on Program Comprehension, pages 83–94.
ACM, 2014.

[16] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk. An

exploratory analysis of mobile development issues
using stack overflow. In Proceedings of the
International Workshop on Mining Software
Repositories, pages 93–96. IEEE, 2013.

[17] P. Morrison and E. Murphy-Hill. Is programming
knowledge related to age? an exploration of stack
overflow. In Proceedings of the Working Conference on
Mining Software Repositories, pages 69–72. IEEE,
2013.

[18] C. Parnin, C. Treude, and L. Grammel. Crowd
documentation: Exploring the coverage and the
dynamics of api discussions on stack overflow,.
Technical report, Georgia Institute of Technology,
2012.

[19] P. Pons and M. Latapy. Computing communities in
large networks using random walks. In Computer and
Information Sciences, volume 3373 of Lecture Notes in
Computer Science, pages 284–293. Springer, 2005.

[20] C. Rosen and E. Shihab. What are mobile developers
asking about? a large scale study using stack overflow.
Empirical Software Engineering, pages 1–32, 2015.

[21] J. Scott. Social network analysis. SAGE Publications
Ltd., 2012.

[22] C. Treude, O. Barzilay, and M.-A. Storey. How do
programmers ask and answer questions on the web?:
Nier track. In Proceedings of the International
Conference on Software Engineering, pages 804–807.
IEEE, 2011.

[23] C. Treude and M.-A. Storey. How tagging helps bridge
the gap between social and technical aspects in
software development. In Proceedings of the
International Conference on Software Engineering,
pages 12–22. IEEE, 2009.

[24] E. Tsui, W. M. Wang, C. F. Cheung, and A. S. Lau.
A concept–relationship acquisition and inference
approach for hierarchical taxonomy construction from
tags. Information processing & management,
46(1):44–57, Elsevier, 2010.

[25] J. Wang and B. D. Davison. Explorations in tag
suggestion and query expansion. In Proceedings of the
Workshop on Search in Social Media, pages 43–50.
ACM, 2008.

[26] S. Wang, D. Lo, and L. Jiang. Inferring semantically
related software terms and their taxonomy by
leveraging collaborative tagging. In Proceedings of the
International Conference on Software Maintenance,
pages 604–607. IEEE, 2012.

[27] J. Yao, B. Cui, G. Cong, and Y. Huang. Evolutionary
taxonomy construction from dynamic tag space.
World Wide Web, 15(5-6):581–602, 2012.

440440440

