
Synonym Suggestion for Tags on Stack Overflow
Stefanie Beyer

Software Engineering Research Group
University of Klagenfurt

Klagenfurt, Austria
Email: stefanie.beyer@aau.at

Martin Pinzger
Software Engineering Research Group

University of Klagenfurt
Klagenfurt, Austria

Email: martin.pinzger@aau.at

Abstract—The amount of diverse tags used to classify posts on
Stack Overflow increased in the last years to more than 38.000
tags. Many of these tags have the same or similar meaning. Stack
Overflow provides an approach to reduce the amount of tags by
allowing privileged users to manually create synonyms. However,
currently exist only 2.765 synonym-pairs on Stack Overflow that
is quite low compared to the total number of tags.

To comprehend how synonym-pairs are built, we manually
analyzed the tags and how the synonyms could be created
automatically. Based on our findings, we then present TSST, a tag
synonym suggestion tool, that outputs a ranked list of possible
synonyms for each input tag.

We first evaluated TSST with the 2.765 approved synonym-
pairs of Stack Overflow. For 88,4% of the tags TSST finds the
correct synonyms, for 72,2% the correct synonym is within the
top 10 suggestions. In addition, we applied TSST to 10 ran-
domly selected Android related tags and evaluated the suggested
synonyms with 20 Android app developers in an online survey.
Overall, in 80% of their ratings, developers found an adequate
synonym suggested by TSST.

I. INTRODUCTION

Tags are part of social bookmarking, a service of Web 2.0 to
classify and label data in an informal way [1], [2]. Tagging is
also used on Q&A-sites, such as Stack Overflow, to categorize
questions. Several recent research approaches have focussed
on the extraction of topics and trends on Stack Overflow, and
tags seem to be a good point to start from. However, they also
found that tags are often too fine grained or too inconsistent
for their purposes [3].

In September 2014, there were more more than 38.000
different tags on Stack Overflow. There is an approach of Stack
Overflow to reduce the large number of tags by suggesting
synonym pairs, consisting of tags that have been created by
privileged users. These synonym pairs are manually suggested
and evaluated, and if they are accepted, they may be used.
At the time of September 2014, there were 2.765 synonym-
pairs on Stack Overflow consisting of 4.593 different tags.
Understanding how the synonyms are built and how they
may be automated could improve studies using tags for a
categorization of posts or finding topics and trends on Stack
Overflow.

In this paper, we first investigate strategies how synonym-
pairs of Stack Overflow are built. Then, we use these findings
to develop a synonym suggestion tool called TSST that imple-
ments theses strategies. For a given input tag, TSST outputs

a ranked list of suggested synonyms. With this research, we
address the following three research questions:
� RQ1: How are the tag synonyms of Stack Overflow built?
� RQ2: How many of the existing tag synonyms on Stack

Overflow can be built with each strategy?
� RQ3: How accurate is TSST in suggesting synonyms?
Regarding RQ1, we manually analyzed the set of synonym-

pairs on Stack Overflow and discovered 9 different strate-
gies, how synonyms are created. Based on these strategies,
we developed TSST that we first evaluated with the set of
synonym-pairs. Answering RQ2, we first analyzed the per-
centage of Stack Overflow synonym-pairs correctly created by
each strategy. It turned out that Metaphone and Synonym-In-
Word are the two most generic strategies to create synonyms.
Furthermore, we found a significant overlap between several
strategies.

For answering RQ3, we evaluated TSST with the Stack
Overflow synonym-pairs and, in addition, with an online
survey. Regarding the evaluation with the synonym-pairs, we
investigated if the correct synonym is found within the top
3, top 5, top 10, or top 15 synonyms suggested by TSST. We
found that 88,4% of the synonyms are suggested correctly, out
of them 67,9% are within the top 5 suggested synonyms and
for 45,9% the first suggestion was the correct one.

Concerning the online survey, we first applied TSST to
10 randomly selected tags related to Android specific posts
on Stack Overflow, and then evaluated the suggestions with
20 Android app developers. Overall, in 80% of their ratings,
developers found an adequate synonym suggested by TSST
within the top 15 suggestions.

In this paper, we make the following contributions:
� A manual analysis of 9 strategies to systematically recre-

ate synonyms.
� A study of how many synonym-pairs on Stack Overflow

can be found using which strategy.
� TSST, a tag synonym suggestion approach and tool.
� An evaluation of TSST with the Stack Overflow

synonym-pairs and 20 Android app developers.
The remainder of this paper is organized as follows. In

Section II, we provide background information to the creation
of tags and tag-synonyms on Stack Overflow. In Section III,
we describe the analysis of the tags and strategies to find
synonyms automatically. Furthermore, we present the answers

Fig. 1. Distribution of the usage of tags (postcount) on Stack Overflow (log-
scale).

to the research questions RQ1 and RQ2. In Section IV, we
introduce the tag synonym suggestion tool TSST. In Section V,
we evaluate its accuracy and performance and answer research
question RQ3. The applicability of the results, as well as their
limitations and threats to validity are discussed in Section VI.
Related work is presented in Section VII and we draw the
conclusions and discuss future work in Section VIII.

II. TAGS AND SYNONYMS ON STACK OVERFLOW

In September 2014, there were 7.990.787 questions on Stack
Overflow belonging to various challenges and problems of
programming. To find relevant questions and answers easier,
each post is labeled with one to five tags. Each questioner
is allowed to tag her post, but only Stack Overflow users
with a reputation of at least 1.500 have the privilege to create
new tags. Users gain reputation, for instance, if a question
or answer of the user is voted up, or an answer is marked
’accepted’. Users lose reputation, for instance, if a question
or answer is voted down or if the user itself votes an answer
down. The data dump from September 2014 contains 38.205
different tags. Among the most frequently used tags are java,
c#, javascript, php, and android. The tag java is
used more than 700.000 times, the tag android more than
560.000 times.

Having a look at the distribution of the usage of tags on
Stack Overflow shown in Figure 1, we see that 25,74% of
the tags are used less than 10 times and only 10,40% of the
tags are used more than 500 times. The comparison of these
numbers to the most frequently used tags, which are used more
than 700.000 times, indicates that many tags have the same
or similar meaning, are too specific, or too general. Another
reason for this large number of different tags may be the fact
that all these tags were created by users and the privilege
needed for creating new tags was initially configured too low.

This is indicated by a steady update of this limit over time
from a reputation of 250, then to 500, and finally to 1.500.1

One measure taken by Stack Overflow to reduce the amount
of new tags is to cull single-use tags, if they are older than 6
months and do not have a wiki.2 Furthermore, Stack Overflow
provides a feature to manually create synonyms for each tag.
On Stack Overflow two tags are a synonym-pair if both tags
have the same meaning, such as jpeg and jpg or one
tag is a subset of the other tag, such as encoding and
character-encoding.3

In September 2014, there were 2.765 synonym-pairs on
Stack Overflow. These synonyms have been created manually
by users of Stack Overflow. All users having a reputation >=
2.500 are allowed to suggest synonyms. These suggestions are
rated by other users. If the score is >= 5, the suggestion is
approved and the synonym may be used for tagging. If the
score becomes <= �2 the synonym suggestion is declined
and deleted.

Each synonym-pair consists of a source tag and a target
tag. The target tag is more general than the source tag and it
replaces internally all uses of the source tag. For instance, by
searching questions tagged with a synonym, questions tagged
with the target tag are displayed, or when a question is tagged
with a synonym, the target tag is displayed when loading the
question. For each tag there exists only one target tag. Target
tags may have more than one source tag.

Tags are often used as additional information for the catego-
rization of posts or for topic modeling [3], [4]. The knowledge
about synonyms could improve studies and approaches by
finding redundant tags and grouping them together. However,
the amount of manually created synonym-pairs compared to
the number of existing tags is low. This motivates our analysis
of the synonym-pairs to find strategies how they are built with
the goal to automate tag synonym suggestion.

III. TAG SYNONYM ANALYSIS

We extracted the list of tags from the data dump of Stack
Overflow, provided by Stack Exchange from September 2014.
The list of synonyms is not available in the dump, therefore we
extracted the list of synonym-pairs from the Stack Exchange
data explorer.4 We select only the tag synonyms that were
created before September 2014.

The synonym-pairs may also be in a tran-
sitive relation, for example rng is the source
tag of random-number-generator and
random-number-generator is the source tag of
random. Consequently, random should also be the target
tag for rng. Analyzing the Stack Overflow tags, we found
that tags are composed of 1 to 5 words that are separated

1http://blog.stackoverflow.com/2010/08/tag-folksonomy-and-tag-
synonyms/

2http://meta.stackoverflow.com/questions/272094/do-not-automatically-
expire-single-use-tags-on-stack-overflow

3http://meta.stackexchange.com/questions/70710/what-are-tag-synonyms-
how-do-they-work

4http://data.stackexchange.com

with a ’-’ or ’.’. In the remainder of the paper, we refer to
these parts as pots meaning part of a tag.

To get more insights on how the synonym-pairs are com-
posed, we manually analyzed the 2.765 synonym-pairs of
Stack Overflow and found 9 strategies. In the following,
we discuss the strategies and present the answer to research
question RQ1:

RQ1 - How are the tag synonyms of Stack Overflow built?
As an answer to the question, we found the following 9

strategies:

� Stemming
� Synonym-In-Word
� Synonym-In-Tag
� Similarity
� Acronym

� DotSharpMinusPlus
� Abbreviation/Synonym
� Metaphone
� Numbers

In the following, we describe each strategy in detail and
explain our approach to automate each one.

Stemming: Synonym-pairs that are built with the Stem-
ming strategy often consist of the singular and plural noun
of the same word. Tags that stem from the same word
are also often grouped to synonym-pairs. We automate
this strategy with the Porter Stemmer [5], provided by
Apache Lucene,5 that cuts the ending of the words and
matches the tags by the stems of the words. Examples for
such synonym-pairs are: algorithm and algorithms or
clustered-indexing and clustered-index.

Synonym-In-Word: There are two possibilities, how tags
are built with the Synonym-In-Word strategy. The first one
matches two tags if one tag is completely contained by the
other tag. The second possibility to match tags is that one
pot matches the beginning or end of another tag that does
not consist of pots. To automate this strategy, we first stem
the tag and look for other tags that start or end with this
tag. If the tag has pots, we stem each pot and search again
for tags that start or end with this part. Synonym-pairs that
are built with this strategy are, for instance, threading and
multithreading or play-mvc and playframework.
We considered the splitting of composed words and found
libraries that split words by camel-case. However, there are
no tags consisting of a capitalized letter and therefore we left
the splitting of words into words for future work.

Synonym-In-Tag: Tags are composed with the Synonym-In-
Tag strategy, if they have at least one pot in common. To
automate this strategy, we split the tag into pots, stem the pots
and built synonym-pairs that have at least one stemmed pot in
common. Examples for synonym-pairs built with this strategy
are android-sdk and android or nested-class and
inner-classes.

Similarity: The name of this strategy already reveals that
tags with similar characters are matched to synonym pairs.
This strategy is often used if there are misspellings or vari-
ant spellings for tags. We automate this strategy by using

5http://lucene.apache.org

three kinds of string similarity metrics, namely the Jaccard-
Index, the Levenshein-Distance and the NGram-Distance. The
Jaccard-Index [6] calculates the number of characters in com-
mon divided through the number of different characters. If
the Jaccard-Index is 1, the two tags consist of exactly the
same characters. The order of the characters is not considered.
The Levensthein-Distance [7] is calculated by counting the
number of edit-operations that are required to change one tag
into the other. Edit operations are, for instance, insertions,
deletions, and substitutions. The NGram-Distance, based on
Kondrak [8], computes the partial matches of substrings of
size n. We set n to the values 2, 3, and 4. The implementation
of the Levensthein-Distance and NGram-Distance is provided
by Apache Lucene.5 We decided to use all similarity metrics,
since they differ in accuracy and implementation. The Jaccard-
Index is less accurate than the Levensthein-Distance and
the Levensthein-Distance is less accurate than the NGram-
Distance. Based on experiments, we evaluated the best settings
for the limits to match similar tags and set the limit for
Jaccard-Index to 0.75, for the Levensthein-Distance to 0.7,
and for the NGram-Distance to 0.6. Synonym-pairs that are
found using this strategy are, for instance, perfomance

and the correct spelled tag performance, or tchart and
teechart.

Acronym: The synonym-pairs that are built with Acronym
consist of an abbreviation that is composed, in the simple
case, of the first characters of some concatenated words. To
automate the creation of an acronym, we take the first character
of each pot of a tag and compose them to an acronym. There
are special cases, when we did take the first character of each
part. If a pot is to, we put a 2 instead of a to. The same
goes for cross and x, and and n. Furthermore, we also
compute complex synonyms, where all combinations of the
first character, first and second character, first to third character
of all pots are composed and matched to a tag that starts or
ends with this abbreviation. Synonym-pairs that are created
with this strategy are, for instance, peer-to-peer and p2p
or user-interface and ui.

DotSharpMinusPlus: The strategy DotSharpMinusPlus re-
places a character with another predefined character or the
literal name of the character. The character . is replaced
by dot, # is substituted by sharp, - is removed, and
the sequence ++ is replaced by pp. The substitutions are
also applied vice versa. To automate this strategy, we use
the Java String API to substitute and remove the characters.
Examples for synonym-pairs following this strategy are: .net
and dot-net, c# and csharp, for-xml and forxml or
c++ and cpp.

Abbreviation/Synonym: Synonym-pairs that are built with
this strategy are synonyms or abbreviations for which we could
not find a schema or pattern how they are created. There are
dictionaries and synonym-sites that provide a list of synonyms
for download, such as thesaurus.6 With these data the matching
of synonyms could be automated. However, domain specific

6http://www.thesaurus.com

abbreviations, such as tdd for testdrivendevelopment
or db for database are not covered. As a consequence,
the implementation of the automation of finding abbreviation-
synonyms is left for future work. Synonym-pairs that we
approach to find with this strategy are discussion and
conversation or text-message and sms.

Metaphone: If the pronunciation of tags is similar, they are
composed into synonym-pairs with the Metaphone strategy.
This strategy is used to find tags with the same mean-
ing but with variant spelling, such as behaviour and
behavior. Furthermore, it helps to match misspelled words
to their correct spelled synonyms, such as heirarchie

and hierarchie. To automate this strategy, we use the
Metaphone algorithm [9], an improved version of the phonetic
algorithm Soundex. Metaphone indexes the tags by their
pronunciation and is provided by Apache Commons.7 The
length of the Metaphone code depends on the size of the tag,
but it has a minimum of 2 and a maximum of 7 characters.
Another synonym-pair that is built with Metaphone is, for
instance, jpg and jpeg.

Numbers: The last strategy we found to create synonyms,
is Numbers. Synonym-pairs are created with this strategy,
when tags containing numbers match to other tags by either
replacing this number with the number in literals or vice
versa. Tags are also matched if they are equivalent if all
numbers are removed. To automate this we check each tag
that contains numbers twice. First, we programmatically
replace all numbers of a tag with their literal number
and search for matches. Second, we remove all numbers
and check for tags that are equivalent, if the numbers are
removed. Synonym-pairs that are created using this strategy
are, for instance, 7zip and sevenzip or joomla-3.1

and joomla-3.0.

In the following, we present the evaluation of the found
strategies and present the answer to the research question
RQ2:

RQ2 - How many of the existing tag synonyms on Stack
Overflow can be built with each strategy

To check if the strategies stated above cover all approved
synonym-pairs of Stack Overflow, we checked for each
synonym-pair programmatically the strategy used to create the
synonym-pair. Strategies, such as Stemming and Synonym-In-
Word often overlap with each other.

Figure 2 shows the percentage of synonym-pairs that can
be created using each strategy. Using the strategy Synonym-In-
Tag, 1.429 of the 2.765 synonym-pairs were recreated, that is
51,7%. The strategy Abbreviation covers 599 synonym-pairs
(21,7%), followed by Synonym-In-Word with 1484 (53,7%),
and Metaphone covering 1.489 synonym-pairs (53,9%). The
strategy Similarity covers 1.390 synonym-pairs (50,3%), Stem-
ming covers 561 (20,3%) synonym-pairs, DotSharpMinusPlus
121 (4,4%), and Numbers 12 (0,4%).

7http://commons.apache.org/proper/commons-codec/

Fig. 2. Percentage of Stack Overflow synonym-pairs that can be created with
each strategy.

Overall, with these strategies, we are able to create 2.445
of the set 2.765 synonym-pairs, that is 88.4% of all pairs
from the reference set provided by Stack Overflow. Man-
ually investigating the 320 synonym-pairs that could not
be matched, we found 310 synonym-pairs falling into the
strategy Abbreviation/Synonym that we have not automated,
yet. Furthermore, for 10 synonym-pairs, we found variations
of the strategy Numbers, such as y2k38 and year2038 that
are not implemented, yet. We plan to address these two issues
in our future work.

IV. TSST - TAG SYNONYM SUGGESTION TOOL

To integrate our strategies, we developed TSST, a tag
synonym suggestion tool. TSST takes one tag or a list of tags
as input, as well as an integer value maxSuggestions for the
maximum number of synonyms to suggest. Then, it generates
synonym-candidates for each input tag and stores them into
a table, consisting of a source tag, a target tag, a counter,
and the used strategy. TSST outputs a ranked list of possible
synonym candidates. Figure 3 shows the steps of the synonym
finding process of TSST with the input tag class and a
maxSuggestions of 5. The creation of the synonym-candidates
is based on the strategies presented above.

We ordered the automation of the strategies from restrictive
to general. At first, the strategy Stemming is applied, then
Numbers and so on. Metaphone is the most general strategy.
Synonym-pairs that belong to this category may also be in
Stemming, Numbers, DotSharpMinusPlus, Synonym-In-Word,
or Similarity. Therefore, we put it at the end. Similarity is
more restrictive than Metaphone, since it considers the literals
of the words, not only their pronunciation. Synonym-pairs
built with Acronym are matched by the begin and end of
other tags, therefore, we put it before Similarity. It occurs
that synonym-pairs could be created with both, Synonym-
In-Tag and Synonym-In-Word. However, Synonym-In-Tag is
more specific than Synonym-In-Word and so we put it before

Stefanie Beyer

.#-+

1-68.021

Word

Synonym-In-Tag

Similarity

Acronym

Stemming

in-Tag
<tag>

15

30

1. classification
2. class-methods
3. class-method
4. class-loading
5. coclass

TSST: <class>, 5

Preprocessing Job

Similarity

Stemming
1-68.021

Fig. 3. Overview of TSST - Tag Synonym Suggestion Tool and the preprocessing job

Synonym-In-Word. We ordered the remaining strategies also
from restrictive to general resulting in the order: Stemming -
Numbers - DotSharpMinusPlus - Synonym-In-Tag - Synonym-
In-Word - Acronym - Similarity - Metaphone.

The synonym-candidates output by each strategy are stored.
If there is already an entry with this combination of tags,
disregarding the source and target tag order, then the counter
for this synonym-candidate is increased. To improve perfor-
mance, we performed the calculations of the string similarity
values, the computation of pots and tags without numbers
and Metaphone codes for each combination of tags in a
preprocessing job. Only string similarity values between tags
of >= 0.5 are considered. The NGram-Distance is calculated
for n = 2, 3, 4. Regarding Metaphone, we computed codes
varying in length ranging from 2 to 7. The results of the
preprocessing job are stored in a database and the job is run
once for a given data set.

Ranking: Each synonym-candidate that is generated by
a strategy has a counter c. Each time, a strategy creates a
synonym-candidate that already exists, c is increased. To rank
the synonym-candidates for each tag, we order them by the
counter c in a descending order and output the suggestions
in this order. Alternatively, we also considered to perform
the ranking based on how often each strategy is used in the
approved set of synonym pairs. We reject this idea, since our
other approach to rank the synonyms performed better on the
set of Stack Overflow synonym-pairs.

TSST is implemented in Java, using libraries of Lucene
and Metaphone, provided by Apache, and a MySQL database
for storing the results. A replication package consisting of the
prototype implementation of TSST and a dump of the database
are available on our website.8

V. EVALUATION OF TSST
In this section, we present the evaluation of TSST and

answer to research question RQ3:

8http://serg.aau.at/bin/view/StefanieBeyer/TSST

RQ3 - How accurate is TSST in suggesting synonyms?
The accuracy of TSST is calculated in two phases. First, we

evaluated TSST on the approved set of 2.765 synonym-pairs of
Stack Overflow and investigated the performance of ranking
the suggested synonyms. Second, we surveyed 20 Android
app developers to evaluate the synonym-suggestions of 10
randomly selected Android related tags.

Accuracy and performance of TSST
We first applied TSST to all the tags of the synonym-pairs

and for each tag output a ranked list of suggestions. We then
iterated the list of suggested synonyms for each tag to check
whether a correct suggestion was found within the top 1, top 3,
top 5, top 10, or top 15 suggestions. The reference set consists
of source and target tags of each created synonym-pair and
each synonym-pair is evaluated twice. Therefore, we divided
the number of correct suggestions by 2. Figure 4 presents the
numbers of correctly matched synonym-pairs within the top
n suggestions and the number of correct found synonyms,
disregarding the rank of the correct suggestion.

Overall, 2.455 out of 2.765 of the synonym-pairs were found
by TSST, disregarding on which position the correct synonym
was. This is an accuracy of 88.4%. Out of the 2.455, 1.839
(74.9%) were within the top 15 suggestions. For 1.766 (71.9%)
tags the correct synonym tag was suggested within the top 10
suggestions. TSST found 1.660 (67.9%) synonyms within the
top 5 suggestions, and 1.464 (59.8%) synonyms within the
top 3 suggestions. Finally, 1.123 out of the 2.455 (45,9%) tag
synonyms matched the first suggestion of TSST.

Online survey with Android app developers
To evaluate how TSST performs on a new set of posts,

we applied it to 10 tags selected from Stack Overflow. We
decided to focus on tags that are related to questions tagged
with android. Furthermore, we selected the 10 tags based
on the distribution of the number of posts tagged with Android
related tags. The distribution is presented in Figure 5.

Fig. 4. Numbers of correctly suggested synonym-pairs from the Stack
Overflow reference set within the top n = {1, 3, 5, 10, 15} suggestions.

Fig. 5. Distribution of number of posts tagged with Android related tags
(log-scale).

Since about 40% of the Android tags are used only once, we
randomly selected 4 tags from this set of tags. 20% of the tags
have a count between 3 and 6, therefore we randomly selected
2 tags from this set of tags. 10% of the tags are used 7 to 12
times, 10% have a count between 13 and 29, 10% are used
between 30 and 100 times, and 10% of the tags have a count
>=101. Consequently, we randomly selected one tag for
each range to complete the set of 10 tags. The selected tags
are: automation, decompiler, interactive,

case-insensitive, date-comparison,

public-method, repository-pattern,

redundant, spring-roo, and canonical-name.
Table I shows the selected tags and their ranges. We used

this set as input for TSST and set maxSuggestions to 15.
The reason to select 10 tags and set maxSuggestions to 15
was to allow our study participants to fill in the survey in a

TABLE I
SELECTED ANDROID RELATED TAGS AND THEIR RANGES

#Tags Tagname(s) Range %
1 automation >100 10%
1 decompiler 30-100 10%
1 interactive 13-29 10%
1 case-insensitive 7-12 10%
2 date-comparison, public method 2-6 20%

4
repository-pattern, redundant

spring-roo, canonical name

1 40%

reasonable amount of time. Each participant had a maximum
10 ⇤ 15 = 150 synonym suggestions to rank that should not
take more than 10 minutes. We wanted to make sure that
participants were able to keep their attention throughout the
survey reducing the risk for errors.

The synonym suggestions output by TSST are evaluated
in an online survey with 20 Android app developers. The
online survey consists of three parts. In the first part, we asked
questions about the programming experience of the developers,
such as years of experience in programming in Java, years of
experience in programming Android apps and if they develop
Android apps as part of their job. In the second part of the
survey, we asked questions on whether and how they use
Stack Overflow: do they use Stack Overflow for posting and/or
answering questions or just reading posts. We also asked if
they use tags, have already created a new tag, and know about
the system of tag-synonyms on Stack Overflow. The third
part of our survey consists of the 10 tags and for each tag
a maximum number of 15 synonyms suggested by TSST. For
each tag, the Android developers chose one synonym they see
as an appropriate synonym or the option ’no suggestion fits’.

Regarding the answers to the first two parts of our survey,
75% of the developers have experience in programming in Java
for more than 3 years. 40% developed Android apps for more
than three years, 30% have developed Android apps for 1 to 3
years, and only 30% are professional Android app developers.
90% of the developers use Stack Overflow, about 25% of them
ask and/or answer questions. None of the developers stated
to have created a tag and only 15% know that there exist
synonyms for tags.

Figure 6 represents the box-plots of the answers of the
online survey. We provide detailed results of the questionnaire
on our website.9

For the tag decompiler none of the developers chose
’no suggestion fits’. 85% of the developers agreed on the
synonym decompiling. 95% of the developers found
a fitting synonym for the tag public-method within
the suggestions. 35% of them agreed on the synonym
method, 30% selected the plural methods. 90% of the
developers chose a synonym for date-comparison.
30% agreed on the suggestion datetime-functions,
25% on datetime-operation. For the tag

9http://serg.aau.at/bin/view/StefanieBeyer/TSST

Fig. 6. Results of the Online Survey. 1 represents the first suggestion, 16 the
option ’no suggestion fits’.

repository-pattern, 85% of the developers found
an adequate synonym. 40% agreed on the synonym
design-patterns, 35% selected repositories. For
the tag spring-roo, 45% of the developers agreed on
the synonym spring. For the tag canonical-name,
30% agreed on the synonym canonical. For the tag
case-insensitive, 75% of the developers found an
adequate synonym within the list of suggested synonyms. 40%
selected the synonym case-sensitivity and 20% the
synonym case-sensitive. For the tags automation

and interactive, 70% of the developers selected a
synonym. For automation, 50% of the developers selected
automated-testing and 10% selected the similar word
automated-tests. For the tag interactive, 30%
selected the first suggestion f#-interactive. However,
also 25% of the developers selected ’no suggestion fits’. Only
60% of the developers found a fitting synonym for the tag
redundant in the list of suggested synonyms. Out of these
developers 45% agreed on the synonym recurrence.

Overall, we got 10 x 20 = 200 ratings with 160 (80%) se-
lected synonyms. The option ’no suggestion fits’ was selected
only 40 times. 85% of the developers selected ’no suggestion
fits’ at least once. For 20% of the ratings the adequate synonym
was not provided within the first 15 suggestions. In 32 out of
160 (20,0%) ratings the first synonym suggestion was selected.
In 64 out of 160 (40,0%) ratings a synonym within the top 3
suggestions was selected. In 87 (54,4%) ratings the selected
synonym was within the top 5 suggestions, and in 127 (79,4%)
ratings it was within the top 10 suggestions.

Concerning the reliability of the ratings, we computed the
intra-class correlation [10] over all ratings. There are 3 types
of intra-class correlation and we chose the second one ICC2k,
since in our survey each developer rated the suggestions for 10
randomly selected tags. The intra-class correlation on average
for ratings on all tags is ICC2k = 0.90 that means strong
reliability.

We also calculated the inter-rater agreement to evaluate the
suggestions generated by TSST. These suggestions are ranked

Fig. 7. Numbers of selected synonyms from the list of the top n =
{1, 3, 5, 10, 15} suggestions provided by TSST.

and so we have ordered-category data. Cohen’s-Kappa [11]
evaluates the inter-rater agreement of ordered-category data
for two raters. To apply this statistics for more than two raters,
we computed the weighted kappa for each pair of raters and
calculated the average on all suggestions. We achieved =
0.61 that means substantial agreement.

To investigate how TSST performs on the randomly selected
tags, we compare the rankings of correctly suggested syn-
onyms of the online survey with our previous results achieved
from applying TSST to the approved set of Stack Overflow
synonym-pairs. For this we need to compare the results on
the same base, namely top 15 suggestions. Therefore, we
computed the ratios obtained in the first study for correctly
suggested synonym-pairs relative to the top 15 suggestions.
Relative to the top 15 suggestions, 96,6% out of the 1.839
correctly suggested synonyms were within the top 10 sug-
gestions, 90,3% were within the top 5 suggestions, 79,6%
within the top 3 suggestions and for 61,1% the first suggestion
was the correct synonym. Comparing these numbers with the
results of the online survey shown in Figure 7, we see that
TSST performs significantly better on the approved set of
Stack Overflow synonym-pairs.

Answering research question RQ3, applying TSST to the
tags of the synonym-pairs of Stack Overflow, we achieved an
accuracy of 74,9% for suggestions within the top 15 rankings
and an accuracy of 45,9% for the first suggestion. Applying
TSST to the 10 selected Android related tags, we achieved an
accuracy of 80% for suggestions within the top 15. However,
only 20% of the suggestions on the first rank were correct.
Furthermore, the statistics of intra-class correlation and inter-
rater agreement show that the reliability of the rating is strong
and the raters achieved a substantial agreement on their ratings.

VI. DISCUSSION

In this section, we first summarize the results of our
experiments. Then, we discuss the differences in the accuracy

obtained by TSST with the approved synonym-pairs of Stack
Overflow and the online survey. Finally, we briefly discuss
potential applications of our approach.

In this research, we investigated the synonym-pairs of Stack
Overflow and derived 9 strategies to recreate the synonym-
pairs systematically. We automated the strategies and devel-
oped the tag synonym suggestion tool TSST. At the time
of writing, we have implemented 8 out of the 9 strategies.
With these strategies, we were able to recreate 88,4% of the
synonym-pairs. To estimate the accuracy of TSST, we applied
the tool to the tags of the Stack Overflow synonym-pairs, as
well as to 10 randomly selected Android related tags whose
synonym suggestions were evaluated in an online survey with
20 Android app developers. The evaluation with the synonym-
pairs showed an accuracy of 74,9% for suggesting a correct tag
within the top 15 suggestions. The results of the online survey
showed that Android developers found an adequate synonym
within the top 15 suggestions in 80% of the ratings.

Comparing the results of the two evaluations, however, we
found that TSST performs significantly better on the approved
set of Stack Overflow synonym-pairs than on the new tags
randomly selected among Android-related tags. In particular,
when comparing the accuracy for suggesting the correct tag at
the first position, the accuracy for the approved set is 45,9%
compared to an accuracy of 20% for the 10 new tags. These
differences indicate that the ranking of suggestions for new
tags should be improved. Having a closer look at the sugges-
tions and their rankings, we found that one reason for the lower
accuracy concerns the similarity within the list of suggested
synonyms. For instance, for the tag public-method, 7
developers selected the synonym method, 6 selected the
similar synonym methods. While the synonym method was
suggested on rank 12, the synonym methods was suggested
on rank 4. Ideally, we argue, that these two suggestions
should be ranked next to each other. In order to improve the
ranking, we plan to consider these similarities in the ranking of
suggestions, for instance, by apply stemming to the suggested
synonyms.

Applying TSST to all tags of Stack Overflow, we expect
to achieve good results for 15 suggestions per tag. Although
not all strategies are implemented, yet, we estimate that the
majority of the synonyms can be found. In the case of
Android-related tags we expect to find the correct synonyms
for 80% of the tags within the top 15 suggestions of TSST.
This is based on the accuracy we obtained with the approved
set of Stack Overflow synonym-pairs. Consequently, TSST
could be used by privileged users to suggest and add synonym-
pairs on Stack Overflow.

Furthermore, since there are too many tags with a similar
meaning and because tags are often too detailed to be used
in studies, we can use the knowledge about the synonyms of
tags to group tags and reduce the amount of redundant tags.
Having a less detailed and less redundant set of tags, we could
improve studies investigating the categories of posts or trends
and topics based on tags, such as [3] of Barua et al. and [4]
of Treude et al..

Threats to Validity
Threats to internal validity concern the manual analysis

of the Stack Overflow synonym-pairs based on which we
developed the 9 strategies for suggesting tag synonyms. To
address this threat, we plan to evaluate the strategies with
active users of Stack Overflow. Another threat to internal
validity concerns errors due to losing attention when filling
in the online survey. We addressed this threat by limiting the
number of tags to 10 tags and the maximum suggestions to
15. We found that the time needed to fill the survey does not
exceed 10 minutes.

Threats to external validity concern the focus of our study
on Android-related tags, as well as the selection of 10 tags for
our online survey. Regarding the first threat, we think that the
amount of Android-related tags is sufficiently large and that
our findings can be generalized to other mobile application
platforms. Regarding the online survey, we randomly selected
the set of tags to mitigate this threat, however, we are aware
of that more tags from different domains need to be studied.
Furthermore, the online survey needs to be performed with a
larger group of users. We plan to address this in our future
work.

VII. RELATED WORK

In the last years, tags got increasing interest in research.
There exist many approaches to suggest or recommend tags,
for blogs, news sites, photo services, or software artifacts.

Zangerle et al. [12] focused on the recommendations of
hashtags for Twitter, considering the text a user enters.
Sigurbjörnsson et al. [13] developed twofold to recommend
tags for online photo services, such as Flickr. Wang et al.
[2] developed an auto tagging system for web pages, such as
news sites, or blogs, as well as a tag suggestion system. These
approaches are based on kNN and tdf-idf. Al-Kofahi et al. [14]
focused on the recommendation of tags for software artifacts
using fuzzy set theory.

Even more approaches deal with the recommendation of
tags for software information sites, such as Stack Overflow.
Saha et al. [15] also investigated an approach to suggesting
tags for posts on Stack Overflow automatically. They use SVM
(Support Vector Machine) and are able to predict missing tags.
Wang et al. [16] developed EnTagRec, an approach to predict
tags for software information sites, such as Stack Overflow or
Ask Ubuntu. They use historical tag assignments to predict
tags with labeled LDA. Stanley et al. [17] implemented a
tag prediction system for the dataset of Stack Overflow. Their
approach uses the Bayesian probabilistic model based on ACT-
Rs declarative memory retrieval mechanisms. It may be used
to introduce new tags to the author, as well as to find tags
used wrongly. Xia et al. [18] introduced TagRec, a tag
recommender system for Stack Overflow using tdf-idf, binary
relevance, and naive Bayes. Furthermore, Short et al. [19]
developed NetTagCombine to recommend tags for posts on
Stack Overflow with tdf-idf. For their recommendation process
they take into account the synonyms of tags provided by Stack
Overflow.

Stefanie Beyer

Stefanie Beyer

These approaches mainly predict tags for posts based on
quantitative methods and heuristics. In contrast, TSST suggests
synonyms for tags, based on the strategies we derived from the
manual investigation of the synonym-pairs of Stack Overflow.

Tags of Stack Overflow have also been used in previous
studies to investigate approaches to predict if a post will
be closed, for the categorization of posts, and topic finding.
Galina et al. [20], as well as Correa et al. [21], used tags to
predict closed questions on Stack Overflow. Treude et al. [4]
used among other information the 200 most frequently used
tags to investigate the topics discussed on Stack Overflow.
Kavaler et al. [22] also used tags as additional information to
find classes in the text of posts to link them to code. Parnin et
al. [23] used tags to investigate the crowd documentation and
API discussions on Stack Overflow. Barua et al. [3] explored
the topics and trends on Stack Overflow over the time. For this,
they also investigated the tags but found that the tags are too
detailed and provide too much information for their reasons.
These approaches motivate our approach to group tags by their
synonyms, as suggested by TSST, thereby reducing the number
of tags and amount of information.

Treude et al. [1] and Storey et al. [24] investigated the social
and technical aspects of tagging, as well as the role tags, as
part of social media, play in software engineering.

The investigation of related work shows there is a significant
amount of research on recommending tags for blogs, news
sites, as well as for Stack Overflow. Furthermore, tags have
been used in studies as additional information for analyzing
trends and topics on Stack Overflow. However, as pointed out
by previous research, most prominent the work by Barua et al.
[3], the tags of Stack Overflow are often too detailed and fine
grained to consider them for a categorization. Although Stack
Overflow provides a manual approach to reduce the amount
of tags by creating synonyms, the proportion of synonyms to
tags on Stack Overflow is low. Currently, there is no research
on how the synonym-pairs are created and how this could be
automated. TSST aims to fill this gap providing strategies to
automate the creation of tag synonyms.

VIII. CONCLUSION

There exist more than 38.000 diverse tags on Stack Over-
flow but there are only 2.765 synonym-pairs that have been
manually created by privileged Stack Overflow users. In order
to increase the number of synonyms and reduce the amount of
diverse tags on Stack Overflow, we investigated an approach
to automate the suggestion of tag synonyms.

We first manually analyzed the synonym-pairs of Stack
Overflow and found 9 strategies how these synonym-pairs are
built. Then, to automate tag synonym suggestion, we imple-
mented each strategy into TSST, a tag synonym suggestion
tool that outputs a ranked list of synonym suggestions for a
given input tag.

We first evaluated TSST with the approved set of Stack
Overflow synonym-pairs. 2.445 out of 2.765 Stack Overflow
synonym-pairs (88.4%) were found by TSST. Out of these,
1.660 (67.9%) were within the top 5 suggestions and for 1.123

out of 2.445 (45.9%) the first suggestion was the correct one.
We further evaluated TSST with an online survey and asked 20
Android app developers for 10 tags to select one synonym out
of the list of suggested synonyms. For 80% of the selected
tags the developers found an adequate synonym within the
top 15 suggestions. The inter-rater agreement statistics intra-
class correlation and weighted Cohen’s Kappa showed strong
reliability of the ratings and substantial agreement among the
raters.

Based on these results, we found that TSST could be used
by privileged users to suggest and add synonym-pairs on
Stack Overflow. We furthermore found that TSST can reduce
the amount of redundant tags and thereby improve previous
studies investigating the categories of posts or trends and
topics based on tags.

Future work is concerned with improving TSST to more
accurately suggest and rank of tag synonyms. For instance,
we plan to implement the strategy Abbreviation/Synonym, as
well as extending the Synonym-In-Word strategy to find words
in words. We will also consider the transitivity of tags in
providing synonym-suggestions, as well as the relation of
source tags and target tags. We plan to improve the ranking of
the suggested synonyms by combining several strategies, such
as Metaphone and Similarity. Furthermore, we plan to extend
TSST to learn from existing, approved synonyms to suggest
synonyms more accurately. An evaluation of TSST on a larger
set of tags of Stack Overflow with more developers is also part
of future work, as well as applying TSST to other Q&A sites
of Stack Exchange.

REFERENCES

[1] C. Treude and M.-A. Storey, “How tagging helps bridge the gap between
social and technical aspects in software development,” in Proceedings of
the International Conference on Software Engineering. IEEE Computer
Society, 2009, pp. 12–22.

[2] J. Wang and B. D. Davison, “Explorations in tag suggestion and query
expansion,” in Proceedings of the workshop on Search in social media.
ACM, 2008, pp. 43–50.

[3] A. Barua, S. W. Thomas, and A. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, pp. 1–36, 2012.

[4] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and
answer questions on the web?: Nier track,” in International Conference
on Software Engineering. IEEE, 2011, pp. 804–807.

[5] M. F. Porter, “An algorithm for suffix stripping,” in Readings in
Information Retrieval, K. Sparck Jones and P. Willett, Eds. Morgan
Kaufmann Publishers Inc., 1997, pp. 313–316.

[6] P. Jaccard, “The distribution of the flora in the alpine zone,” New
phytologist, vol. 11, no. 2, pp. 37–50, 1912.

[7] V. Levenshtein, “Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707, 1966.

[8] G. Kondrak, “N-gram similarity and distance,” in String Processing
and Information Retrieval, ser. Lecture Notes in Computer Science,
M. Consens and G. Navarro, Eds. Springer, 2005, vol. 3772, pp. 115–
126.

[9] L. Philips, “Hanging on the metaphone,” Computer Language, vol. 7,
no. 12, 1990.

[10] P. E. Shrout and J. L. Fleiss, “Intraclass correlations: uses in assessing
rater reliability.” Psychological bulletin, vol. 86, no. 2, p. 420, 1979.

[11] J. Cohen, “Weighted kappa: Nominal scale agreement provision for
scaled disagreement or partial credit.” Psychological bulletin, vol. 70,
no. 4, p. 213, 1968.

Stefanie Beyer

Stefanie Beyer

Stefanie Beyer

Stefanie Beyer

Stefanie Beyer

Stefanie Beyer

[12] E. Zangerle, W. Gassler, and G. Specht, “Using tag recommendations to
homogenize folksonomies in microblogging environments,” in Proceed-
ings of the International Conference on Social Informatics. Springer-
Verlag, 2011, pp. 113–126.

[13] B. Sigurbjörnsson and R. van Zwol, “Flickr tag recommendation based
on collective knowledge,” in Proceedings of the International Confer-
ence on World Wide Web. ACM, 2008, pp. 327–336.

[14] J. Al-Kofahi, A. Tamrawi, T. T. Nguyen, H. A. Nguyen, and T. N.
Nguyen, “Fuzzy set approach for automatic tagging in evolving soft-
ware,” in Proceedings of the International Conference on Software
Maintenance. IEEE, Sept 2010, pp. 1–10.

[15] A. K. Saha, R. K. Saha, and K. A. Schneider, “A discriminative
model approach for suggesting tags automatically for stack overflow
questions,” in Proceedings of the International Workshop on Mining
Software Repositories. IEEE Press, 2013, pp. 73–76.

[16] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec: An
enhanced tag recommendation system for software information sites,”
in International Conference on Software Maintenance and Evolution.
IEEE, 2014, pp. 291–300.

[17] C. Stanley and M. D. Byrne, “Predicting tags for stackoverflow posts,”
in Proceedings of the International Conference on Cognitive Modelling,
2013, pp. 414–419.

[18] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in software
information sites,” in Proceedings of the Working Conference on Mining
Software Repositories. Piscataway, NJ, USA: IEEE Press, 2013, pp.
287–296.

[19] L. Short, C. Wong, and D. Zeng, “Tag recommendations in stackover-
flow,” 2014.

[20] E. G. Lezina and A. M. Kuznetsov, “Predict closed questions on
stackoverflow,” in Proceedings of the Spring Researchers Colloquium
on Database and Information Systems, 2013, pp. 10–14.

[21] D. Correa and A. Sureka, “Fit or unfit: analysis and prediction of ’closed
questions’ on stack overflow,” in Proceedings of the Conference on
Online social networks. ACM, 2013, pp. 201–212.

[22] D. Kavaler, D. Posnett, C. Gibler, H. Chen, P. Devanbu, and V. Filkov,
“Using and asking: Apis used in the android market and asked about in
stackoverflow,” in Social Informatics. Springer, 2013, pp. 405–418.

[23] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd documen-
tation: Exploring the coverage and the dynamics of api discussions on
stack overflow,” Citeseer, Tech. Rep., 2012.

[24] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng, “The
impact of social media on software engineering practices and tools,”
in Proceedings of the Workshop on Future of Software Engineering
Research. ACM, 2010, pp. 359–364.

