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Abstract. The mining of software archives has enabled new ways for
increasing the productivity in software development: Analyzing soft-
ware quality, mining project evolution, investigating change patterns and
evolution trends, mining models for development processes, developing
methods of integrating mined data from various historical sources, or
analyzing natural language artifacts in software repositories, are exam-
ples of research topics. Software repositories include various data, rang-
ing from source control systems, issue tracking systems, artifact repos-
itories such as requirements, design and architectural documentation,
to archived communication between project members. Practitioners and
researchers have recognized the potential of mining these sources to sup-
port the maintenance of software, to improve their design or architecture,
and to empirically validate development techniques or processes. We re-
visited software mining studies that were published in recent years in
the top venues of software engineering, such as ICSE, ESEC/FSE, and
MSR. In analyzing these software mining studies, we highlight different
viewpoints: pursued goals, state-of-the-art approaches, mined artifacts,
and study replicability. To analyze the mining artifacts, we (lexically)
analyzed research papers of more than a decade. In terms of replicability
we looked at existing work in the field in mining approaches, tools, and
platforms. We address issues of replicability and reproducibility to shed
light onto challenges for large-scale mining studies that would enable a
stronger conclusion stability.

1 Motivation

Software archives, such as source control systems, defect tracking systems, or
archived communication among project members, are used to help managing
the progress of software projects. Since about a decade, the software engineering
community exploits the potential benefit of mining this information to support
the evolution of software systems, improve software design and reuse, and em-
pirically validate novel ideas and techniques. Research has now proceeded to
uncover the ways in which mining these archives can help to understand soft-
ware development, to support predictions about software properties, and to plan
software projects. Researchers regularly exchange their results and present novel



tools at conferences and symposia, such as MSR4, MSA 2010,5 ASDS 2013,6 or
MSR Vision 2020.7

Mining software archives (MSA) is one kind of software analytics that deals
with investigating repositories that are used during software development to
store all kinds of information about the software. Examples are version control
systems, issue trackers, task management, project management, software forges
(such as BitBucket or GitHub), Q&A sites (such as StackOverflow), or commu-
nication archives (such as emails, instant messages, or social-media data).

MSA has evolved from applying data mining to all kinds of data about a
software system to a discipline of data-driven analysis that today is known as
software analytics [69]. Software analytics is more than just data mining software
versions. It is about obtaining insights into the actual development and evolution
of software systems. These insights shall enable the observer to take actions in
terms of changing practices, tooling, or infrastructures to improve productivity
of software developers.

One example for such insights into evolutionary aspects of software is de-
fect prediction, i.e. discovering code components (modules, classes, methods,
etc.) that are likely defect-prone. Actions following from that can be redesign,
refactoring, or even reengineering. Another example are so-called recommender
systems that provide help for code completion, suggest good code examples, or
support understanding code. Other examples are software effort prediction [112]
or test-code impact analysis [127].

The major conference for researchers to publish their latest mining results
is the Working Conference on Mining Software Repositories (MSR).8 Analyzing
the proceedings of past MSR conferences revealed that the mined artifacts have
become manifold. In the first editions of the MSR conference, about ten years
ago, only data from CVS repositories was investigated, whereas today researchers
mine data from a broad range of resources, such as Git repositories, Q&A sites,
blogs, emails, tutorials, and Twitter. The prominence of version repositories has
declined over the years, but augments towards ”social” artifacts, focusing more
on the individual developer.

Kagdi et al. [49] surveyed the field and provide a good overview of the areas
of MSR that cover dimensions of information sources, representation (type and
granularity, as well as context), purpose of studies, methodology, and evalua-
tion. Besides a comprehensive discussion of approaches and their classification,
it is remarkable that in 2007 (looking back for about a decade) only few threats
to (internal and external) validity were discussed in MSR studies. We argue
that, with the manifold techniques and mined artifacts, the dimensions of repro-
ducibility and replicability have not been addressed adequately. This opens new
avenues for systematic mining studies.

4 http://msrconf.org
5 http://www.ifi.uzh.ch/seal/events/msa2010.html
6 http://www.ifi.uzh.ch/seal/events/ASDS-2013.html
7 http://msrcanada.org/msrvision2020/
8 MSRconf.org
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In this chapter, we address the question of systematic mining studies by
looking at two aspects in particular: reproducibility and replicability. A special
focus will be given to the latter with investigating approaches, techniques, and
platforms published at the major conferences in the field in the recent past—in
particular ICSE, ESEC/FSE, and MSR—that claim to deal with this challenge
to some extent. We look into what makes a good mining study, then describe
techniques for mining, and further study replicability and systematic mining
studies. We also take a look onto how these challenges are taken up in recent
fields, such as green mining, sentiment analysis, and studies covering human
aspects.

2 Mining Studies

This section introduces two approaches where to place the field of mining soft-
ware repositories into data analytics and data science. This is followed by an
overview what characterizes a mining study. The main focus is on the setup for
the study, the process, and the interpretation of the results. Then, we discuss the
threats of mining software repositories, in particular for bug prediction on biased
datasets, sample size, stable rankings, and time variance. Approaches, languages
and tools that support researchers in mining software repositories, for instance,
to share data, to improve reproducibility and to avoid redundant preprocessing
of data are presented. Finally, we discuss the reproducibility of mining studies.

2.1 Meta-Studies on Mining Software Repositories

Mining software repositories evolved a lot in the last decade and the question
about the relation of MSR to data science and software analytics needs to be
addressed.

Mining Software Repositories and Data Science. Mockus [74] discussed in his
keynote at the MSR conference in 2014 the relationship between mining software
repositories, operational data, and data science. Mining software repositories
focuses on extracting knowledge from software data. Both use operational data,
so he concludes that mining software repositories actually is data science.

Mining software repositories and data science have similar goals, namely to
identify laws by extracting knowledge from data. The data used for data science
is often experimental data, such as temperatures of sensors. Accordingly, for
mining software repositories mainly software data is analyzed.

Operational data are digital traces which are not primarily created for anal-
ysis, such as logs of mobile phones that are not created to be measured, but may
be used for data science. However, the use of operational data brings along multi-
ple challenges, such as missing data or even wrong data. Therefore, the challenge
is to identify data laws to segment information, impute missing information and
correct the data. Traditional data may be taken into account to fill the gaps of
operational data. Tools that create operational data are, for instance, version



control systems, such as SVN or git, as well as issue-trackers, such as BugZilla
or JIRA. Mockus argues that it is worth to research on operational data because
there is so much data that also map the human activities to the digital domain.
Furthermore, data is treacherous [74] and may have multiple contexts, missing
data, and faked data.

The aims for mining software repositories and data science are similar: ap-
proaches or tools to engineer operational data with a software system to ensure
integrity of results, to get more effectively results, and simplify the building of
software systems to analyze operational data in order to increase the quality
of the data. Therefore, operational data are common in both, data science and
mining software repositories. The conclusion is that mining software repositories
is indeed data science.

Software Analytics. Menzies and Zimmermann [69] describe the changing goals
of software analytics over time, as well as the the different methods of data
analytics, and the principles to perform a good study. They point out that the
main goal is to give ’relevant advice’ to the audience. Who should benefit from
the outcome of the analysis? Analytics for testers and developers may require
different tools and techniques than analytics for managers or even researchers.
The claims of data analytics are to share information, or more concrete, to share
models, insights, data, and methods. The main goal about 40 years ago was to
find ’the model of software engineering.’ By the time, this goal has changed,
since one model cannot fit all software projects. So the focus shifted to find
methods of a particular system that may be transferred to other systems. The
most important factors for data analysis are the choice of the right usage patterns
for the data, as well as the user itself who should profit from this analysis.
The right choice of tools, for instance to visualize data or draw conclusions
automatically from data might influence the data analysis positively. However,
tools, algorithms, as well as a suitable hardware for analysis are not the key
components.

The Seven Principles for Software Analytics by Menzies and Zimmermann give
advice on how to perform data analytics. To apply data analysis effectively, the
users’ goals and needs must be well known and understood. If possible, early
and continuous feedback of the users should be considered. The system built for
data analysis should be able to repeat the analysis several times. The possibility
of growing datasets should be taken into account. If the approaches did not
work out it is often helpful to be open-minded for other directions. Evaluation
of the data plays a very important role. One of the main evaluation principles
is to repeat the analysis various times with different percentage of the data and
see if the results change. Furthermore, preprocessing of data is often required
and should not be neglected. The last principle guides to use a wide range of
technologies. Tools that are constantly updated with the implementation of new
methods make this easier.

The analysis of data has widespread goals and different focus. Therefore,
Menzies and Zimmermann differentiate between several kinds of analytics. First,



they distinguish internal and external analytics. For internal analytics the access
to data is easier than for external analytics that requires more effort, since the
data typically has to be anonymized to keep privacy. Second, they distinguish
the quantitative and the qualitative method. The former is applied automatically
by using several data mining tools and statistics; the latter is mainly applied by
investigating the data manually. Lastly, they point out the necessity to distin-
guish exploratory and deployment analytics. In exploratory analytics, the goals
often are not clear and the research might not result in prominent findings. How-
ever, if results are found and the goals are clear, it is possible to use deployment
analytics to build tools and systems to use the findings.

2.2 What is a Mining Study?

Let us explain a mining study first by looking at a recent experiment in the field
of defect prediction [28]: We train models to predict defect-prone source files of
the next release of a software system. For that we use product, process, and orga-
nizational measures and then apply machine-learning techniques to training the
models. The result is a model (basically a set of coefficients for a function or set
of functions) that fits the data best. This model can then be used for predicting
the defect-prone modules of the next release. Typical models are regressions or
decision trees; however a huge variety of machine learners can be used for such
an experiment.

While the setup and the process of such a mining study might be clear, it
is less clear what the essential ingredients of a good study are. We might view
that it is all about the data; it is of course data-driven, but at the same time
it is as much about the research hypothesis and the underlying assumptions of
the experiment: Typically, the starting point is a research question that tries to
relate (or correlate) some property X (e.g. code churn) with another property
Y (e.g. defects), to check whether there exists a statistically significant correla-
tion. Other setups might investigate how some property Z (e.g. code ownership)
has developed over time, by looking at the version history of a software system.
Phenomenons, such as code ownership or networks of developers, often are re-
lated to quality aspects of the software system, such as defect proneness, code
irregularity, or complexity.

A mining study typically starts with a research hypothesis, then prepares
the data to be investigated, analyzes the data, and continues to interpreting the
results. The granularity of studies can vary quite a bit, ranging from factors
influencing some particular property (such as buggy commits) to comprehensive
quality measures (such as proper design or architecture).

With any such mining study, it is important to check whether the process
of analysis, mining, and interpretation can be reproduced or replicated. Repro-
ducibility means that the study description provides all the data, tooling, and
configuration settings to validate the experiment. Replicability means that the
study can be performed with different data sets and projects to gain a broader
conclusion. Basic criteria for studies are:



Stability: The algorithms and tools run stable without crashing.
Reliability: The same results can be achieved with same data over and over

again.
Efficiency: The results can be produced in reasonable amount of time given

the volume of the data.
Auxiliary tasks to be supported: Added value of the data can be provided,

for example in the form of models or higher-level abstractions.

Essential for all mining studies is the data preparation and data cleansing,
which includes analyzing spurious values in the data and eliminating outliers
that would impact or even distort the results. Data filtering is the primary key
for a successful study; it deals with selecting subsets of data based on defined
selection criteria (dependent on the research question to be investigated). Data
binning is one such technique that tries to reduce the effects of minor observation
errors by using intervals. Original values that fall in a given interval, a bin, are
used as representative for a central value. For example, this is done in defect
prediction, where files (or classes etc.) are put into bins to represent defect prone
or non-defect prone files.

More details on proper design of mining studies can be found, for example, in
the Cross Industry Standard Process for Data Mining (CRISP-DM) documen-
tation [105].

2.3 Threats to the Validity in Mining Software Repositories

Next, we discuss some threats of mining studies. In particular, we discuss four
approaches to address threats in bug prediction concerning stable rankings of
estimation methods, sample size and bias in datasets, and time variance. Any of
these can result in distorted or even questionable predictions.

Stable Rankings for Different Effort-Estimation Models. Menzies et al. [68] inves-
tigated 158 software effort estimation methods concerning their stability across
different evaluation cirteria on various datasets and randomly selected features
of COCOMO. The goal was to find a ranking among the estimation methods,
since previously conducted studies suffered from ’conclusion instability’ [107].
They use the COSEEKMO effort-estimation workbench that combines prepro-
cessors to prune rows or columns, learners, such as local calibration, model trees,
and standard linear regression, as well as different nearest-neighbor algorithms.
Menzies et al. evaluated the performance of the methods by applying the model
to a training set and then to a test set, as well as by collecting performance
statistics using AR (Absolute Residual), MRE (Magnitude of Relative Error),
or MER (Magnitude of Error Relative to the estimate), and counting the num-
ber of times a method loses with the Mann-Withney U test. They found that
Local Calibration (LC), COCOMIN + LC, COCOMIN + LOCOMO + LC, and
LOCOMO + LC perform better than all the other combination of methods and
conclude that the combination of nearest neighbors with other methods is quite
powerful.



Sample Size vs. Bias in Defect Prediction. Rahman et al. [95] performed a study
how bias and size influence the results of mining studies on defect prediction.
They sampled a dataset of high quality to several small ’biased and polluted
sub-datasets,’ to see if there is an effect on the bias of the defect prediction.
They considered five kinds of bias for defect prediction: experience of the defect-
fixer, severity of the defect, proximity to the next release deadline, the time
to fix a bug, and the cardinality in size of the commits for each defect. Meta-
models are used to evaluate if there are differences between the types of bias
and their effect on the results. They found, that the type of bias does not have
a significant influence on the prediction results. Furthermore, they investigated
how bias, pollution, and size effect the prediction results. Size is at least as
important as bias and pollution. Considering the performance metrics AUC and
F50 it is even significantly more important.

Bias in Bug-fix Datasets. Bird et al. [8] investigated how biased datasets influ-
ence the performance of bug prediction techniques. A biased dataset is a dataset
where links between the code repository and the bugs tracker are missing. In
their study they considered the severity of the bugs, as well as the experience of
the developer who fixed the bug. They found that severe bugs are most likely
fixed by experienced users, since there exist often links between the bug-fix and
the issue-tracker. Bird et al. tested their hypotheses on BugCache, a bug pre-
diction tool for biased datasets. By sampling the dataset, they found that if
BugCache is trained on a certain level of severity, it performs well for this
severity, but badly for other severities. The usage of a model, considering biased
data and trained for trained for all kind of bugs, is reflected in the performance
of the bug-prediction model.

Time Variance and Variability in Defect Prediction. Ekanayake et al. [18] inves-
tigated the problem of variability in the accuracy of a bug prediction-model over
time. They looked into four large open source projects and empirically identified
various project features that influence the defect-prediction quality. In partic-
ular, they observed that a change in the number of authors of a file and the
number of defects fixed by these authors influence the prediction quality. As a
major conclusion their experiments showed that there exist periods of stability
and variability of prediction quality. As a result, one should use approaches such
as the one proposed to assess the model’s accuracy in advance. These findings
have a major consequence in that prediction quality is highly dependent on the
time interval one selects for training the data to then make predictions. The ac-
curacy of the predictions, therefore, can range from poor to high just depending
on the selected time slices. Still, it remains open how to pick time intervals that
represent stable (versus variable) phases in the software development.

2.4 Approaches, Languages, and Platforms for Mining

There are many possibilities how to support the mining of software reposito-
ries. Here, we introduce approaches, languages, and platforms that support, for



instance, data sharing, the examination of mining software repositories from dif-
ferent aspects, and the use of domain-specific languages (DSLs). Extracting and
preprocessing data from software archives is time intensive and, therefore, need
to be assisted by tools. For that, several platforms and tools have been developed
that we briefly introduce in this section.

SeCold, TA-RE, iSPARQL, and EvoONT address this problem by provid-
ing the possibility of data sharing and making the replication of studies easier.
SeCold, implemented by Keivanloo et al. [52,53], is ”an open and collaborative
platform for sharing software datasets.” It provides research data online, to avoid
that researchers preprocess the same data several times. The data is collected
from issue trackers, such as BugZilla, Issuezilla, or JIRA, as well as from ver-
sion control systems, such as SVN, CVS, or Git. This data then is merged to
an abstract representation that mirrors the main concepts of these approaches.
SeCold can also be used to find code duplicates as well as source-code-license
violations. Studies and experiments in data mining are often not replicable due
to the lack of shared knowledge about how the data is extracted. The results
also depend highly on the selected parameters and heuristics. The goal of TA-
RE is to address this issue. The corpus of TA-RE consists of the extracted data
of software repositories and of an exchange language to share additional data
that influences the results of the studies, but is not contained in the data itself,
such as heuristics or parameter settings. The data may be further used to bench-
mark experiments. Kiefer et al. [56] extended SPARQL to iSPARQL and added
the possibility to query for similar software entities, such as classes or methods.
Furthermore, they developed EvoONT, based on the Web Ontology Language
(OWL) that includes software, releases and bug-related data. It is possible to
extend EvoOnt and integrate existing tools. With the combination of iSPARQL
and EvoONT it is possible to mine software repositories that are represented in
OWL. This combination supports the visualization and counting of code changes
between versions, the localization of bad code smells or orphan methods, and
the recommending of refactorings, as well as the computation of design metrics,
such as size and complexity.

Mining software repositories includes a variety of aspects, concerning the
evolution, the granularity of data, and meta-data of the projects, such as de-
velopment process or team information. Yamashita et al. developed E-CUBE,
an analysis tool for mining software repositories [125]. E-CUBE addresses plat-
form evolution, target evolution, and scale evolution. They use FODA (Feature
Oriented Domain Analysis) to create a DSL for E-CUBE. To target platform
evolution, abstract types for bug repositories or code repositories are defined,
instead of using a concrete repository. To address target evolution E-CUBE
structures the data in a way so that it may be observed on several levels of gran-
ularity, such as file-level or method-level. The DSL provides the functionality to
link projects to deal with the massive amount of data and the time for analysis.
Spacco et al. [111] used software-repository mining to find better ways to teach
and learn programming. They proposed the tool Marmoset. Marmoset collects
snapshots of code, that are committed on saving operations. These fine grained



code changes are collected in a database with a data schema that allows one to
apply lots of queries to get information about fine-grained code evolution [111].
CVSgrab [120] provides the possibility to visualize the evolution of large software
projects. It uses evolution similarity metrics to group files with similar evolution
patterns. CVSgrab may be used to get information about the evolution of the
team and development process, as well as for the localization of development
issues.

In [45] Huang et al. describe their approach to use Alloy (a language and
tool for relational models) to build a family of DSLs, similar to SQL, to address
the various applications of mining software repositories. For this, they applied
FODA (feature oriented domain analysis) to get the feature model of MSR. The
feature model is then transformed to a logical formula using Alloy, which is used
to derive automatically the language elements of the DSL.

In [122] Würsch et al. developed a pyramid of ontologies for software evo-
lution analysis named SE-ON,9 in particular to support mining studies. These
ontologies model the domains of software versions, issues, developers, and the
like. As such, they constitute a common vocabulary for tools to work on and
exchange mining results. For software evolution analysis, Ghezzi and Gall de-
vised a framework and platform for software analysis as a service, named SOFAS
[26,27]. This approach enables systematic and reproducible software evolution
analyses that exploit semantic descriptions of software, bugs, and versions using
ontologies, semantic web services, and a RESTful architecture. This constitutes
a major milestone for reproducibility in software mining studies [25]. The back-
bone for software analysis services is based on the pyramid of software evolution
ontologies named SE-ON [122] and, for example, is used for developer support
in Hawkshaw [123,124].

3 Revisiting a Decade of Software Mining Studies

Reasons to mine software repositories are manifold. Work related to mining
software repositories spans from feature location, to better understanding de-
velopment processes, to improve power consumption of software. We present a
comprehensive overview of existing works in the field. In particular, we present
a systematic literature review of research topics and methods applied from the
past two years, followed by a lexical analysis of the research papers from eleven
years of the Mining Software Repositories conference.

3.1 Why Researchers Mine Software Repositories

Over the past years, many research fields adopted MSR approaches as a new
means to achieve their respective goals or to improve existing approaches. We
reviewed the MSR research published at MSR 2014, ICSE 2014, ICSE 2013, and
FSE 2013, to better understand what problems can be tackled through mining

9 http://www.se-on.org/

http://www.se-on.org/


Fig. 1. Goals for Mining Software Repositories



software repositories and to gain an insight on the datasets used in the field.
Figure 1 summarizes the goals that the reviewed work pursues. We identified
three high-level goals: productivity goals, quality-assurance goals, and manage-
ment goals. All three goal categories subsume concrete software engineering tasks
that researchers try to support by developing targeted approaches and tools. In
addition, the reviewed research includes exploratory studies to understand differ-
ent aspects of software projects better, and meta-studies that aim at improving
MSR methodologies.

Productivity Goals. Much past research aims at tools helping developers write
better code faster, thus, pursuing the ultimate goal to make developers more pro-
ductive. A category of such tools commonly referred to as Recommender Systems
for Software Engineering [99] received much attention over the last decade. These
recommender approaches typically mine code repositories [10,40,44,83], version-
control systems [75], or even more fine-grained sequences of code changes to iden-
tify usage patterns [55,80]. Other productivity-enhancing approaches identify
code locations that are likely to be affected by change requests from interaction-
and version-control histories [129].

Another line of research focuses on the documentation of software systems.
This research ranges from exploring the common forms of documentation [116],
to enriching existing documentation with information about common pitfalls
from bug trackers [51], examples from StackOverflow [115], or usage patterns
from large code bases [81], to the automated creation of feature models for
better software understanding [15,104].

In the light of the ever increasing amounts of data, e.g., due to the number
and size of publicly available projects or additional data sources, such as Q&A-
sites, it becomes even more difficult to find a specific piece of information. Lemos
et al. [62] automatically expand code-search queries to increase the probabil-
ity of finding the desired code snippets in the presence of potential vocabulary
mismatch, i.e., when query and code use alternative terminology. Ponzanelli et
al. [90] automatically look up relevant StackOverflow threads based on the
developer’s current coding context. Both approaches aim at faster knowledge
accessibility and less need for context switching.

Exploratory work in the field includes the investigation of how developers
use GitHub’s pull requests to better understand change-management processes
[33,97]. Other work focuses on the adoption of language features over time
[17,98]. In the long run, such work will discover which kind of support develop-
ers need in learning and migrating to new language features. To improve widely
used question-and-answer sites like StackOverflow, researchers investigated tech-
niques to identify frequently asked questions [4] and reasons why questions re-
main unanswered [101].

Quality-Assurance Goals. Much research is dedicated to support developers in
ensuring functional correctness of code, enhancing maintainability of code, and
optimizing code. There are many different goals and approaches, which we dis-
cuss subsequently.



Bug detection is one of the most prominent areas in MSR. The goals are
to detect previously unknown bugs [12,22,81], localize reported bugs in source
code [34,82], and identify potential fixes for bugs [38]. Johnson et al. investigated
on shortcomings of current bug-detection tools that keep developers from using
them in practice [48]. They found that developers are dissatisfied by the addi-
tional effort required to use such tools and by the number of false positives they
produce. They collected possible improvements to address the usability aspect.

Many evaluations of bug-detection approaches use FindBugs10 as a test ora-
cle. Therefore, researchers applied FindBugs to large sets of projects, to create
benchmark datasets [72,102]. Other evaluations of bug detection approaches use
issue trackers as oracles to test whether actually reported bugs would have been
found by the respective approach. However, Chen et al. [14] identified a sys-
tematic bias in this evaluation technique, due to bugs reported only much later
than introduced. Rahman et al. [94] compare static bug finders and statistical
prediction methods to identify and discuss synergy potentials between these two
fields.

Code clone detection and origin analysis are considered as further quality-
assurance goals. Both identify code locations that are similar in terms of their
structure or semantics. Mondal et al. [75] identify source code locations that are
likely to require changes, based on their similarity to recently changed locations.
Kevic et al. [55] identify locations that a bug report or change request most likely
impacts, based on the impact of previous reports. Steidl et al. [113] present a
framework for incremental origin analysis that scales even for very large code
bases to make such approaches feasible in practice. Different oracles have been
proposed to evaluate code clone detection approaches [59,76].

Tulsian et al. apply MSR methods to facilitate model checking in practical
application [117]. Though model checking has improved significantly, it remains
challenging to select the right checker for a given program and property. They
prove that statistical evidence for correlations between checkers and program-
property pairs can be mined. To the best of our knowledge, this is the first work
to combine model checking and MSR.

Another rising new area of MSR research aims at the optimization of program
power consumption on code level. Hindle [42] named this area Green Mining.
Pinto et al. [88] explored which power-consumption-related questions matter
to software developers. Other pioneering work investigates on frameworks for
further research [43] and on evaluation benchmarks [130].

McIntosh et al. [67] inspected modern (lightweight) code-reviews in OSS
projects. They find that reviews positively influence software quality, if review
coverage is high and reviewers are involved in the development process. Beller
et al. [6] find that the changes triggered from review processes are surprisingly
similar between OSS and industrial projects. They analyze what kind of changes
are triggered from reviews and what triggers them.

10 http://findbugs.sourceforge.net/

http://findbugs.sourceforge.net/


Management Goals. Some research from the MSR community tackles manage-
ment related goals. As management is a cross-cutting concern, some of these
goals are also related to aspects such as the triaging of bug reports or quality
assurance in general.

Bug triaging encompasses tasks such as finding report duplicates [2,57,60,61],
automatic identification of non-reproducible bug reports [19], or predicting block-
ing bugs [119] and bugs that are eventually fixed [128]. Closely related research
automatically infers bug-management processes from issue trackers [35], this ex-
ploratory work could help to detect differences between the intended and the
actual process and identify potential for improvement.

Moreover, MSR techniques are used to estimate the effort (in terms of re-
sources) required to realize an incoming change request based on historical
change requests [100,132]. Other work investigates on how such effort models
can be transferred between companies [71].

A different, quality-assurance-related management goal is the allocation of
hardware resources for testing. Especially large industry projects face the prob-
lem that execution of all their regression tests takes too long for timely feedback.
Therefore, Anderson et al. [3] and Shi et al. [108] propose approaches to rank
tests according to their likelihood of identifying the next bugs.

Another closely related area is defect prediction. Its goal is to predict code
modules (e.g. files, classes, or methods) that are likely to contain a bug, in order
to optimize quality assurance efforts. While some defect-prediction research still
explores new algorithms [47], most current effort is concerned with building cross-
project defect-prediction models [24,79,131]. Lewis et al. [63] investigated the
impact of defect-prediction tools on practitioners. They found that the predictors
are rarely used, since, like the bug-prediction tools discussed above, they are to
imprecise and investigating on their findings is much effort. Furthermore, the
tools miss to present rationales for their findings to the users. In research on
defect prediction, bug trackers are often used as oracles to evaluate the prediction
quality. Herzig et al. analyze how misclassified bugs in such trackers impact
evaluation results [41].

Recently, considering human factors becomes more and more important in
software engineering research. The goal is to gain insight on the feelings of devel-
opers or other stakeholders involved in software development [37,77]. Such ap-
proaches are often referred to as Sentiment Analysis. Recent work has analyzed
sentiments involved in discussions [89] and commit messages [36] on GitHub
projects. Chen et al. [13] mine customers’ opinions about software changes
from reviews in mobile-app marketplaces.

Exploratory research aims at understanding how software and processes evolve
over time, given changes in requirements, technologies, staff, and such. Past re-
search has, for example, investigated feature churn on the basis of large source-
code repositories [5,87] and changes of dependencies between modules in large
software systems [9]. Other work focuses specifically on correlations between
database-schema and code changes [93]. Brunet et al. [11] investigated whether



developers discuss design on GitHub, in commits messages, issues comments, or
pull requests.

More exploratory work looked on reasons for project success and down-
fall [1,64]. Yamashita et al. [126] researched what makes developers contribute
to OSS projects, while Matragkas et al. [66] explored indicators for a healthy OS
community. Other research looked at how developers contribute to OSS projects
on GitHub [86,106] and how they collaborate [118].

Meta Studies. A significant part of MSR research is to support the community
itself and to bring it forward in terms of replicability and reproducibility [92].
Researchers have created large datasets of GitHub project (meta) data [32,121]
and version histories [23] together with platforms to access them, as a basis for
future research. Others investigated on scalable infrastructure and algorithms to
perform analyses and searches on todays huge datasets [21,58].

To mitigate risks to the validity of evaluations, Kalliamvakou et al. [50]
discuss common pitfalls and respective counter-measures of studies based on
GitHub data. Linares-Vasquez et al. [65] looked at datasets from Google Play
and discuss bias introduced by reusable app-modules. Merten et al. [70] discuss
strategies to efficiently separate code from unstructured text in large datasets.

3.2 Characteristics of the Data Sources Used

MSR research has long passed the point of mining only software repositories.
Alongside traditional sources, such as code repositories and version-control sys-
tems, many other knowledge bases, such as issue trackers, Q&A sites, and devel-
opers itself, are the target of mining approaches. Researchers collect data from a
multitude of companies and projects, from the very small to the very large. They
creat datasets of various sizes and with regard to different criteria. Many of these
datasets are tailored to answer specific research questions, others to reproduce
previous results, and others again to enable reproducibility and comparability
of future work.

In the majority, researchers evaluate their approaches using one or multiple
software projects as exemplary subjects. Depending on the respective approach,
they retrieve different types of data from these projects, e.g., sources of test and
production code, execution traces, change histories, bug reports, developer or
user discussions, and even energy-consumption traces. The data sources from
which this data can be retrieved and the effort required to do so varies greatly.

This section first gives an overview of which data sources have been exploited
and how and why they were selected. Second, it presents some filtering strategies
applied to extract data from these sources and the properties of the resulting
datasets. Last, it discusses the limitations of these datasets and the experiments
performed on them as well as the issue of reusability of those datasets.

Data Sources. Datasets have a huge impact on the validity of MSR experiments.
Oftentimes, datasets qualify for the generalizability of the findings. Thus, to
reduce the threats on external validity, researchers constitute big datasets that



include diverse data [78]. The datasets’ diversity can stem, for example, from
small and large change sets or from a lot of different developers.

To create big datasets, researchers often mine the source-code repositories of
large OSS projects, because this data is publicly accessible and contains many
data points. Popular examples of such projects are Eclipse [19,24,60,61,119,128],
Firefox [19,128,130], and the Linux kernel [34,70,87]. However, all data points in
such datasets originate from the same project and might not be representative
for other projects.

To increase the diversity within datasets, researchers mine different projects
from meta-repositories, such as Apache Projects [12,14,77], the Eclipse Market-
place [121], the Gentoo Repository [9], or Google Play [51,57]. Many of these
contain more diverse projects, ranging over multiple sizes and maturity levels.
Since all projects in meta-repositories are accessible in the same way, the effort
to extend datasets is manageable. However, diversity may still be limited, since
projects in such repositories often either belong to the same domain or are devel-
oped by the same organization. This issue was discussed by Nagappan et al. [78]
who presented an approach to select diverse sets of projects for evaluations, in
order to increase external validity. Proksch et al. [92] further discussed how to
use this idea for a standardized platform of evaluation datasets.

Recently, the emergence of mega-repositories, such as SourceForge [62,98,131],
GitHub [32,121], or Google Code [131], helped researchers more easily access
large quantities of projects. Mega-repositories contain a huge variety of projects,
targeting all kinds of platforms. However, researchers showed that the variety of
projects in such repositories can bias datasets. Kalliamvakou et al. [50] show, for
example, that the majority of the projects on GitHub are personal and inactive;
that GitHub is also used for free storage and as a Web hosting service; and that
almost 40% of all pull requests do not appear as merged, even though they were.

In addition, researchers have investigated on closed-source, commercial prod-
ucts [19,22,96,82,63,132]. Some research could show similarities, other differences
between commercial and OS software. A general problem with evaluations on
commercial products is the availability of the datasets, which is mostly limited
by legal restrictions. Therefore, such evaluations are typically not reproducible.

Besides repositories, benchmark datasets, like the Nasa PROMISE reposi-
tory,11 are valuable data sources. These are specialized datasets that contain
precomputed metadata used in the evaluations of respective tools. In contrast
to the non-standardized way of retrieving data from repositories, benchmark
datasets enable the comparability of results.

To further investigate on software projects, MSR was complemented with
the mining of issue trackers, such as JIRA [19,77] or BugZilla [19,24,34], Q&A
sites, such as StackOverflow [4,88,90], as well as email discussions [37,114], dis-
cussion threads [11,89], documentation sites [1,116], code reviews [6,67], change
requests [129], and customer reviews [13]. To fully exploit these as data sources,
the linking between issues and source code changes became a research target in
its own right [113,129].

11 http://openscience.us/repo/

http://openscience.us/repo/


A further data source constitutes observational studies, which capture, for
instance, interaction traces of developers within the source code [55] or inter-
actions with specific tools [63]. The effort to obtain such datasets is especially
high, since it requires the contribution of large numbers of developers and the
legal and privacy matters are particularly present.

Data Sampling. Much of the reviewed work does not specify why one data source
was selected over the other. Mostly, the selection seems guided by the specific
requirements of the respective approach. The generalizability of the results is
pursued by increasing the datasets’ size. Large project sets (up to 140k projects)
are often sampled from mega-repositories, e.g., in [11,13,77,86,98], while smaller
sets (1-50 projects) are also collected manually, e.g., in [19,24,38,57,61,119]. The
number of projects is limited by the manual effort and time required to include
further projects.

The primary filtering criteria is the availability of required (amounts of) data
about the projects and the format this data is available in. For example, Erfani
Joorabchi et al. [19] filter for projects that use either BugZilla or JIRA as their
issue trackers, because the prototype implementation of their approach supports
these two platforms; Kechagia et al. [51] select clients of the BugSense SDK, as
crash reports are available for these projects; Brunet et al. [11] select projects
with more than 50 discussion threads on GitHub, as they want to detect design
discussions; Aggarwal et al. [1] select popular projects from GitHub that have
documentation, as they want to investigate on relations between popularity and
documentation.

Some work considers the diversity of their sample, with respect to dimensions
such as the programming languages [3,131], the project domain [13,24,46,63],
project size [13,46,63], project maturity (age, size, quality measures) [41,46],
and open-source vs. industrial software [116].

After the selection of a project set follows the extraction of data from those
projects, e.g., by analyzing source code [59], change history [80,87], discus-
sions [77,88], or bug reports [2,57]. In this process, again, different sampling
strategies are applied. For example, researchers often limit datasets to data-
points with certain properties, like closed bug reports [2,14,41,57,61,128], an-
swered questions [4] or discussions with certain keywords [88], code entities with
online documentation [51], or issue reports with links to code changes [67,129].
Work that uses historical data, like change history or discussions, often limits
the considered time period [3,13,77,128,129].

A special case in data sampling is the interaction with developers. For sur-
veys, the most common strategy is to just take all received answers [59,90,113,118].
Researchers also include validation questions, to filter participants, especially
when calling out to the general public. The driving factor seems the need for a
sufficiently large number of participants.

Reusability. When looking at the availability of datasets, we found that only 27
publications (about 29%) make the respective datasets available for reuse. We
counted only those papers that provided an explicit link or instructions on how



to obtain the dataset. Another 2 publications (about 2%) name legal issues in
the context of industry cooperations as the reason for not publishing the dataset.

Only 10 publications (less than 11%) actually reuse a dataset from previous
studies. Unfortunately, it is difficult to understand why this is the case, as we
did not encounter any work that discusses problems or shortcomings of available
datasets as the reason for coming up with a new one. Future work should identify
reasons for this low reuse rate, e.g. insufficiencies of the datasets, and respective
mitigation strategies.

The remaining 58% of the work does not mention availability at all. This
shows that reusability is not generally considered by the community.

3.3 A History of Artifacts in Mining Research

The artifact selection has a great impact on the replicability and reliability of an
experiment’s result. To better understand which factors influence the selection of
artifacts within previous experiments, we investigated the proceedings of the past
MSR conferences. Specifically, we conducted a lexical analysis on all accepted
papers of the past eleven MSR conferences to answer the following questions:

Q1: At which point in time were particular artifacts more popular? How do
technical developments influence MSR research?

Q2: Which artifacts will be used most likely in future?

Procedure. In our effort investigating these questions, we created for each past
MSR conference a list including the most popular terms of each paper. To elicit
each year’s list of most popular terms, we first collected the proceedings of
the past eleven years. To establish our dataset, we only considered full- and
short-papers, disregarding other paper types, such as papers related to mining
challenges. Parsing the remaining 297 papers into strings,12 enabled to analyze
the content of each paper. First, we eliminated the text, which follows the last
occurrence of the term ”‘references”’. Then, we split these strings into tokens,
according to the whitespaces in the text. To improve the accuracy of our analysis,
we performed well-known text-preprocessing steps, which included stop word re-
moval and stemming. Specifically, we removed stop words included in an English
stop word list of the Journal of Machine Learning Research.13 For stemming the
tokens, we used the Porter stemming algorithm [91], which strips suffixes from
terms. To find the most popular terms within each paper, we counted the occur-
rences of each remaining token, producing a set of the top-ten terms per paper.
Finally, we combined for each year the top-ten lists of each paper to a map,
which includes pairs of terms associated to the count of appearance in a top-ten
list.

12 We used the java PDF library Apache PDFBox, https://pdfbox.apache.org/
13 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-

list/english.stop



Q1: At which point in time were particular artifacts more popular? How do tech-
nical developments influence MSR research? Overall, we identified 15 distinct
sources of artifacts which are used for mining. These resources include cvs, git,
mercurial, github, svn, jazz, bug, commit, patch, message, stackoverflow, email,
twitter, blog, and tutorial. There are resources which are closely related to the
source code, such as source code repositories. In contrast, other resources are
more generic, not targeting particularly towards software engineering. To exam-
ine the appearance and popularity of the different kinds of artifacts, we plotted
the artifacts’ popularity metric along a timeline, see Figure 3.3. The diagram
depicts in the upper part technologies for versioning source code, while the re-
maining artifacts and sources for artifacts are represented in the lower part of
the diagram.
When looking at the popularity of different version control systems over the
years, the data indicates that in first experiments of the MSR conference cvs
was used predominantly. Then, in 2009, several version control systems, were
mentioned a lot in papers: jazz, svn, and git. However, from 2009 onwards ver-
sion control systems were not as prominent as before. Our dataset indicates that
terms like github and mercurial gained popularity.
Various terms related to communication channels started to appear more fre-
quently from 2009 onwards. While terms like email and message started to be
mentioned already in 2006, another category of artifact sources, namely social
media, started to appear predominantly in 2011. From 2011 a conglomerate of
various artifacts from different sources were included in MSR experiments.
Our data indicates that more and more diverse artifacts are considered in a
mining study. The consideration of more and diverse artifacts highlights differ-
ent aspects within the programming tasks of developers. It potentially converges
more and more to the actual environment in which a developer works. However,
the introduction of new artifact sources reduces the reproducibility and replica-
bility as each experimenter then selects a particular combination of artifacts to
be mined out of the set of available artifacts.

Q2: Which artifacts will be used most likely in future? To make a qualified
guess which artifacts will become even more prominent in future, we analyzed
which subtopics of MSR are currently emerging and would potentially involve
new artifacts. Hence, we filtered our dataset for terms which appeared for the
first time at most three years ago. The terms revealed by our filtering scheme
can be categorized into three major topics:

– Green Mining, indicated through terms, such as energy, consumption,
green, power, watt, and energy-greedy

– Mobile Software Engineering, indicated through terms, such as mobile,
chrome, and browser

– Human Aspects in Software Engineering/ Social Mining, indicated
through terms, such as emotion, behavior, twitter, and stackoverflow

Interestingly, the term nonisolated appears as well in this filtered list, further in-
dicating that the examination of several integrated artifacts bears further poten-



Fig. 2. Popularity of artifacts and artifact-sources in MSR since 2004.

tial. These three research areas uncover artifacts which could potentially become
more prominent. As example, related to green mining, artifacts about CPU, I/O,
and memory traces are particularly interesting. Advanced technologies, which
necessarily require energy-aware applications, such as the Google Glass, might
unravel even further artifacts. Considering mobile software engineering, uncov-
ers that, for example, data gathered through Web IDEs could become relevant
for further experiments. To better understand human behavior within the soft-
ware development process, a variety of data sources can be mined. Data sources
to better understand developers capture either data about the developer itself,
as example through psycho-physiological measurements in particular situation
while coding, or capture data about social interactions of developers. Devices,
such as eye trackers, electrodermal activity, electrocardiodiagrams, or electroen-
cephalograms, allow detailed insights about individual behaviors during a pro-
gramming task. Communication threads in emails or messages were part of early
experiments in the MSR community. However, in recent years the range of these
artifacts has increased. Recent experiments mine Twitter feeds, so it is conceiv-
able that social networks, such as Facebook, will eventually become a mining
artifact for software engineering as well.



3.4 Discussion

We performed a survey of the MSR research published at MSR 2014, ICSE 2014,
ICSE 2013, and FSE 2013 and performed a lexical analysis on the proceedings
of the last decade (2004-2014)of the MSR proceedings. Comparing the used ap-
proaches and artifacts supports our hypothesis that MSR research questions
change over time. We hypothesize that there is a constant development of on-
going research, driven by two main factors: First, MSR research solves software
engineering problems and respective tools emerge and spread. Second, new and
evolving tools present new features, which pose new possibilities and challenges
to MSR research.

We observed that today’s artifacts hold more and more data about indi-
viduals in software engineering processes. Researchers have shown that modern
mining techniques are able to extract valuable information from such data. This
enables more personalized investigation approaches and tools in the future. How-
ever, it also gives rise to new problems, such as the major privacy concerns that
come with the mining of data from social media.

The survey shows that MSR research already came a long way towards rep-
resentativity of evaluation datasets and generalizability of respective results.
However, more work is required to further increase the diversity and to improve
reusability of evaluation datasets which can increase the comparability of results.

4 Replication of Mining Studies

The replication of studies in mining software repositories is essential to compare
different mining techniques and their results across many projects. The study
of Ghezzi and Gall [25,27] reported that the replication of these studies is still
at a rather early stage. However, the replication of mining studies is just as
fundamental as the studies themselves.

Very few studies can be reproduced because of the lack of availability of
the tools or the data used [30] for the study: The tools used in the studies are
accessible only for approximately 20% of all the studies and for another 20% they
are only partially accessible. Even when publicly available, they are difficult to
set up and use. As a matter of fact, they are mostly prototypes (or a collection
of scripts) and work only under rather specific operating systems and settings.

Data can be divided into raw and processed data. Raw data can be directly
retrieved from publicly available sources such as version control systems, issue
trackers, plain source code, mailing lists, etc. Preprocessed data, which is what is
actually used to perform the mining, is the result of the retrieval and processing
of raw data. While raw data is usually widely available (at least in the case of
OSS projects), processed data is not.

Different approaches have been proposed to address this problem. But these
efforts are mainly aimed at creating large, internet accessible, data repositories,
such as PROMISE [103]. Some of these internet repositories offer a query-able



static collection of data for specific projects fetched from single [73] or multi-
ple sources [84,85]; other online repositories allow the user to interactively run
specific analyses on her own projects of interest [29,31].

Large static software data repositories such as PROMISE14, Krugle15, or
Open Hub (formerly known as Ohloh)16, provide third party applications with a
common body of knowledge to build analyses upon. They could also be useful to
provide benchmark data to test and compare similar tools/analysis that use such
data. However, they do not target the replication of analyses and are based on
static data of a multitude of software projects. The interactive features of these
online repositories limit the user to only the pre-defined analyses the platform
offers by design. Replicability is thus still limited to very few and specific cases.
While these online repositories are certainly a step into the right direction, a
more systematic approach to replicability is required [25].

4.1 Platform Support for Mining Studies

Platforms to support mining studies have been developed, although their number
is still very low, given that the effort to spend on providing a mature platform
is pretty high and that scientifically such an achievement is hardly rewarding.

SOFAS (Software Analysis as a Service) is a platform developed at the Uni-
versity of Zurich that enables a systematic and replicable analysis of software
projects by providing extensible and composable analysis workflows [26]. These
analysis workflows can be applied repeatedly and in the same manner on a
multitude of software projects, facilitating the replication and scaling of mining
studies.

Using SOFAS, Ghezzi et al. investigated the mining studies of the MSR
conference from 2004 to 2011 [27] and found that from 88 studies published in
the MSR proceedings in that time frame, they could fully replicate 25 empirical
studies using their platform. Additional 27 studies could be replicated to a large
extent. The remainder of 36 studies could not be replicated due to lack of tool
support or automation of the models or that were proposed in the studies. A
platform such as SOFAS that focuses on analyses services up to the level of
statistical analysis can support (and automate) close to 60% of the published
studies. This shows that there is a high potential for such platforms to support
the automation and replication of mining studies.

Dyer et al. developed Boa [16], which is a mining tool for large code repos-
itories, which translates queries formulated in a domain specific language into
parallelized code that runs on a Hadoop cluster. It is one of the few tools that
address a systematic extraction of data from code repositories. For that, it of-
fers a domain-specific language and infrastructure that supports the testing of
hypotheses and the re-running of mining experiments. It can be used to mine
repository metadata as well as source code across thousands of software projects.

14 www.promisedata.org
15 www.krugle.org
16 www.openhub.net



Formulating queries in the Boa DSL enable to look for the existence of particular
code fragments (e.g., assert statements or specific class names), but not to per-
form more elaborate investigations, such as complexity computations, code clone
or code smell detection or other more complex structural analyses. However, it is
certainly a major contribution to the field of replicating software mining studies
as it provides a web-based interface to its infrastructure and a DSL as query
language.

Kenyon developed by Bevan et al. [7] is a platform designed to facilitate the
fact extraction from code archives and configuration management systems. Its
features enable a multi-project analysis of repositories by providing a common
set of importers from various kinds of archives. As such it can be seen as one of
the early platforms to deal with the peculiarities of different archiving systems
in version control, issue tracking, or configuration management. It is mainly a
toolbox to build one’s analyses on top, but by itself does not provide specific
mining features. It can be seen as a middleware between the specifics of software
archives and the applications that actually perform the mining parts.

4.2 Replication of Software-Mining Studies

The importance of replication has long been recognized in other fields, such as
statistics, field research, or psychology. We highlight the following quote about
replication taken from [39]:

”Replication is the key to the support of any worthwhile theory. Repli-
cation involves the process of repeating a study using the same meth-
ods, different subjects, and different experimenters. It can also involve
applying the theory to new situations in an attempt to determine the
generalizability to different age groups, locations, races, or cultures.
[..]
Replication, therefore, is important for a number of reasons, including
(1) assurance that results are valid and reliable; (2) determination of gen-
eralizability or the role of extraneous variables; (3) application of results
to real world situations; and (4) inspiration of new research combining
previous findings from related studies.”[39]

According to [109], replication can be divided in two main categories: exact
and conceptual replication. Exact replication is when the procedures of the ex-
periment are followed as closely as possible. Conceptual replication is when the
experimental procedure is not followed strictly, but the same research questions
or hypotheses are evaluated, e.g. different tools or algorithms are used or some
of the variables are changed.

In [25], a mining study was considered replicable whenever it could be repli-
cated, either conceptually or exactly, using mining and analysis services available
in the mining platform SOFAS. Table 1 describes how many of the analyzed stud-
ies published in the MSR conference 2004–2011 could be replicated and to which
extent.



Study
category

Number of
studies (%)

Replicable
Partially
replicable

Not
replicable

Version History Mining 8 (9%) 4 0 4

History Mining 17 (20%) 0 8 9

Change Analysis 13 (15%) 5 6 2

Social Networks and
People

19 (22%) 6 5 8

Defect Analysis 19 (22%) 8 6 5

Bug Prediction 8 (9%) 2 2 4

88 (100%) 25 (30%) 27 (32%) 32 (38%)

Table 1. Replicability of MSR studies from 2004–2011; source: [25]

As a result, 52 out of the analyzed 88 mining studies (i.e. 59%) could be
fully or at least partially replicated with mining services offered by SOFAS. The
replication of these studies typically requires basic services such as import from
various version control or issue tracking systems; it further requires composite
services such as change coupling analysis or linking issues to fixes in the code,
all of which can be supported by a platform such as SOFAS. The details of how
each study category can be replicated are given in the paper [25].

In terms of case studies that have been investigated in the MSR conferences,
a study by Gonzalez-Barahona et al. [30] reported the following most often ana-
lyzed projects until 2010: PostgreSQL (18), ArgoUML (16), Eclipse (15), Apache
Web Server (10), Gnome and Linux (7). The study shows that there are rather
few studies that have been frequently analyzed, but it also shows that some of
them could be used as reference projects for further replication studies.

4.3 Performance of Prediction Studies

With any mining study, its performance is essential. For that, we briefly look
into some of their performance aspects, in particular for prediction studies.

Time Variance. It depends on the time interval chosen for training whether a
(defect) prediction study has better or worse performance. Studies such as [18]
investigate time variance dependencies by taking different time intervals (such
as 1 or 2 months etc.) and computing the prediction model.

Calibration of Learners. It also depends on the calibration of the (machine)
learners used and the coefficients computed for coming up with a highly ac-
curate prediction. This means that data preparation (data cleansing, binning,
filtering, etc.) in combination with the proper configuration of learners is es-
sential for reproducible and replicable studies. Keung et al. analyze aspects of
learner calibration for selecting the best effort predictor in software effort esti-
mation [54].



Data Preparation. Data distribution analysis, outlier elimination, and binning
(failure-prone, non failure prone) are essential. As for binning there are quasi
standards in the MSR community that are widespread and accepted, for example,
failure-proneness classification is based on the median of failure distributions;
this however is a model that could be more fine-tuned to the data and less
binary. Learning about the data (including its visualization) are key practices in
data mining (see CRISP-DM [105]) and need to be part of any mining study.

Benchmarking. Results of a mining study are typically not benchmarked, but at
most compared to some ”baseline technique”. This however has a bias in terms of
what is considered such a baseline technique and whether this is representative
for the kind of data, the research question, and the case studies to compare
with. As there is lots of data sources available (such as PROMISE, or the MSR
Mining Challenge datasets), unfortunately, there is no benchmark data (results
of mining studies) out there. This asks for an intensive investigation, as being
performed, for example in our most recent SNF project named ”Whiteboard.”

4.4 Replicating Mining Studies with SOFAS

For replicating a mining study one has to take the dataset of the experiment,
prepare the data according to the published data preparation mechanisms (e.g.,
distribution analysis, filtering outliers, binning, etc.) and then start with the
same dataset the modeling; one would typically use functions for importing data,
preprocessing it, and delivering models to start with for data mining and ma-
chine learning. The latter would be outside a mining platform, but be embedded
features of machine learning software. As such, the machine learning parts are
outside a platform, such as SOFAS, but the platform would provide interfaces
to the machine learner.

Fully replicable with SOFAS means that the published study can fully be
computed inside the platform including the presentation of the results. 25 out
of 84 studies (i.e. 30%) in our set were fully replicable.

Partially replicable means that platforms such as SOFAS would provide all
functionality until it gets to the machine learning or statistics parts. In the
replication study, 27 out of 84 (i.e. 32%) fell in that category.

This left 32 out of 84 (i.e. 38%) in the residual of non-replicable studies.
Summing up the fully and partly replicable studies this amounts to 52 out of 88
(i.e. 59%) of all the published studies by then. This clearly shows the potential
for such platforms as they can be considered major contributors to the replicating
software mining studies.

Given a mining platform such as SOFAS, the replication of an already pub-
lished study is just one aspect. A further substantial benefit is that the original
study can be extended rather easily in at least two ways:

– Extending a study by adding more software systems to the dataset
– Extending a study by refining or adding research questions to the analysis



Given the goals of replication (assuring that results are valid and reliable; de-
termining the generalizability of extraneous variables; applying results to other
(real-world) situations; and inspiring new research (questions) combining pre-
vious findings) the two dimensions of extensibility are essential for the field of
mining studies. We need more studies of the same kind to assure our findings
are the same and that they generalize beyond the typical small body of systems
(a handful to a dozen).

Next, we look into one particular replication study that extended an original
software mining studies by adding more systems to be analyzed and by extending
its research question.

4.5 Replicating the Study on “Do time of day and developer
experience affect commit bugginess?”

The original study, performed by Eyolfson et al. [20], investigates the correlation
between the bugginess of a commit and a series of factors: the time of day of the
commit, the day of week of the commit, the experience and commit frequency
of the committer. Such a mining study is based on the history of a project
extracted from its version control system combined with data from issue tracking.
The authors consider as a bug-introducing commit any commit for which there
exists another commit explicitly fixing the former at a later point in time. To
identify them, the authors first detect all the bug fixing commits using a standard
heuristic used in the MSR field: finding the ones that have specific keywords
(e.g. “fix”, “fixed”, etc.) in their commit message. Buggy commits are commits
that changed files that were involved in such fixes.

In their investigation, the Eyolfson et al. studied the two projects, the Linux
kernel and PostgreSQL, and discovered four major results: (1) about a quarter
of the commits in a project history introduce bugs; (2) the time of the day
does actually influence the introduction of bugs, as late night commits (between
midnight and 4 AM) are significantly buggier and morning commits (between
7 AM and noon) are less buggy; (3) regularly committing developers (daily-
committers) and more experienced committers introduce fewer bugs; and (4) the
influence of the day of the week on the commit bugginess is project-dependent.

In the replication study of this paper published in [25], Ghezzi et al. verified
these four findings by fully replicating the original study. Moreover, they also
tested if the findings also hold for three additional OSS projects: Apache HTTP,
Subversion, and VLC. They extended the original study by adding more software
systems as subjects to the study. And they also extended the study by refining
and adding more research questions. The goal of the replication study was to
show the potential of a systematic mining platform such as SOFAS to draw
broader (in number of systems investigated) and deeper (in number of questions
addressed) conclusions with little additional effort.

To replicate this study, the following steps had to be performed:

1. Extracting the full version history of the project: This can be accomplished
by using a version history extractor.



2. Identifying the bug-introducing and bug-fixing commits (i.e. revisions) from
the version history. This can be accomplished by a bug-revision linker, which
would find the bug-fixing commits. To accomplish that, the replication study
encoded the bug-fixing identification algorithm for Git and Mercurial and
provided those in their SOFAS platform. Actually, the heuristics was adapted
to support a larger vocabulary (fixes, fixed, bug(s) in addition to fix).

3. Extracting the commit frequency and experience of the all the develop-
ers who introduced bugs (calculated from the bug introducing date). This
is achieved by querying the data extracted in the first step with specific
(SPARQL) queries, as SOFAS works with RDF and ontologies (for data
representation) and SPARQL (for querying).

4. Aggregating the buggy commits by time of the day, day of the week, devel-
opers experience, and commit frequency. This is also achieved with SPARQL
queries.

5. Interpreting the results. SOFAS simply supports the extraction and combi-
nation of analyses and data. The conclusions still have to be drawn manually
by the users of such analyses, depending on their specific needs.

The replication study analyzed the projects in the time frame of July 1-10,
2012. The results were lined up with respect to the original study:

Percentage of Buggy Commits: The replication study confirmed the results of
the original study for both Linux and PostgreSQL. Some slightly different val-
ues were explained by the different heuristics used to detect bug fixes and the
different analysis date (the projects were analyzed a year later than the orig-
inal study). Moreover, all the other analyzed projects exhibited similar values
(22-28%), as shown in Table 4.5. These results even indicate a trend worth in-
vestigating in more detail and with a larger body of projects.

bug-introducing bug-fixing
commits commits commits

Linux 268’820 68’010 (25%) 68’450
PostgreSQL 38’978 9’354 (24%) 8’410
Apache Http Server 30’701 8’596 (28%) 7’802
Subversion 47’724 12’408 (26%) 10’605
VLC 47’355 10’418 (22%) 10’608

Table 2. Commit characteristics of the analyzed projects - source: [25]

Influence of Time of the Day on Commit Bugginess: The replication study con-
firmed the results of the original study for both original projects Linux and
PostgreSQL. Moreover, the analysis of the additional projects substantiates the
finding of late night commits (midnight until 4 AM) versus morning and after-
noon commits. However, the replication study showed that these ‘windows’ of



below average bugginess greatly vary across projects. Furthermore, the individ-
ual commit bugginess of projects follows different patterns which do not allow
any further generalization on the influence of the time of the day on the commit
bugginess.

Influence of Developer on Commit Bugginess: The replication study confirms
the original results that bugginess decreases with greater author experience for
all the projects analyzed. In all projects, a drop in commit bugginess is evident as
the time a developer has spent on a project increases. In four of the projects such
drops happen between 32 and 40 months of experience, while for the remaining
one, PostgreSQL, such a drop takes place at 104 months of experience.

Influence of Day of the Week on Commit Bugginess: The replication study
confirms also that the day of week can have some influence on the commit
bugginess. However, the added projects and their commit bugginess present quite
different patterns. Apache HTTP server and Subversion tend to have two commit
bugginess ‘phases’: a higher than average one from Tuesday to Friday and a lower
than average from Saturday to Monday. The bug introduction in VLC is almost
the opposite, as it is lower in the middle of the week (Wednesday to Friday).
The analysis of these additional projects shows that the finding of the original
project that commits on different days of week have about the same bugginess is
not generalizable. Moreover, it also shows that the results of a previous study by
Sliwersky et al. [110], which showed that Friday was the day with the most buggy
commits (based on the analysis of Mozilla and Eclipse), cannot be generalized.

4.6 A Plea for Conclusion Stability

Given the need for replication to achieve mining goals and the potential support
of analysis platforms, we need to scale and extend studies, and come up with
benchmarks based on a multitude of projects analyzed. To advance the field of
software mining studies and enable better conclusion stability across studies, at
least two things have to be provided:

Infrastructures and Mining Platforms. Analysts should be able to run software
mining studies on a large corpus of software systems with only little effort. It
is essential to guide them through the process of designing and carrying out
empirically sound studies based on good patterns for software data analysis
and point them to potential pitfalls based on anti-patterns. Replicability of the
studies is key and should be fostered by an adequately formal description of
data, data-processing, study design, and study results.

Benchmarking. Software forges store vast amounts of artifacts and data related
to the software process. This information can potentially serve as a baseline to
assess whether a given software system follows a ”healthy” evolution path or
whether its underlying development process needs adjustment.



5 Conclusion and Outlook

Mining software repositories is a research area that gained a lot of attention over
the last decade. In particular with the open and free access to software archives,
such as version control systems, issue trackers, or various other kinds of data
about a software project, mining version history has shown great potential for
advancing the state-of-the-art in software engineering. Many studies have been
published so far, with quite varying benefit to the field. It is, therefore, important
to take a fresh look onto the field and discuss the goals, approaches, artifacts,
and replicability of these mining studies.

We revisited a decade of software mining studies and highlighted mining
goals, study replicability, and trends in mined artifacts. Since the artifacts used
for mining software repositories are highly diverse, we visualized changes in ar-
tifacts, and thereby indicated some future trends. We also discussed how the
replicability of studies is influenced by the evolution of the artifacts.

Our systematic literature review of the research topics and methods en vogue
in the last two years showed that the main goals to mine software repositories
are mostly productivity goals, such as the identification of change impacts, as
well as making the development more effective. Other goals are to support qual-
ity assurance, for instance by finding and predicting bugs, or the detection of
code clones and the calculation of test effort. Management-relevant goals, such
as the estimation of change effort, the understanding of human factors, or the
understanding of processes, are pursued as well, but by a much smaller number
of studies.

Additionally, after investigating the reusability of studies, we found that still
very few studies are replicable due to the lack of replication information including
data and tools. Only 40% of the studies provided their datasets for reuse, for
only about 20% of the studies the tools are available. Only 2% of the studies
mentioned that data could not be provided due to legal issues. However, if data
is available and accessible (e.g. in OSS repositories), mining platforms such as
SOFAS or the like can replicate a substantial amount of studies (currently up
to 60%) by providing automation support for the analysis and mining.

Software data repositories, such as PROMISE, Krugle, or Open Hub provide
the possibility to apply analyses of the data they already preprocessed. However,
this does not solve the problem of replicability. Mining platforms do address
this problem by supporting the systematic and repeatable analysis of software
projects. Still, for conclusion stability, many more systems have to be analyzed
and studies have to be replicated on a large scale to enable deep conclusions and
benchmarking of systems.

To analyze the mining trends, we investigated 297 papers of the past eleven
years of the MSR conference lexically to analyze the artifacts used for min-
ing. We found that the popularity of different version control systems changed
quite substantially over the years. For the first experiments merely CVS was
used. In 2009, the mining of the version control systems Jazz, SVN and git was
predominant. From 2009 onwards also GitHub and Mercurial are used for min-



ing. Emails and messages are investigated since 2006 and social media gained
popularity since 2011.

We investigated the terms that appeared the first time in the last three years
to make an educated guess which artifacts will get more popular in the near fu-
ture. We identified three main topics that could gain popularity in future: green
mining, mobile software engineering, as well as human aspects in software en-
gineering and social mining. Artifacts for green mining could be, for instance,
CPU or I/O traces. Artifacts for mobile software engineering may include data
from Web IDEs and for human aspects, for instance, psycho-physiological mea-
surements may be conducted, using eye trackers while coding.

As software-project data continues to grow fast, the plethora of mining stud-
ies will grow along with the potential to gain more and better insights into
aspects of (more) productive software development. However, a clear focus will
have to be on conclusion stability of these studies, provided by systematic ex-
periments and studies combined with their proper replicability.

Acknowledgements

This work was partially funded by the German Federal Ministry of Education
and Research (BMBF) within the Software Campus projects KaVE and Eko,
both grant no. 01IS12054. The views and opinions expressed in this article are
those of the authors and do not necessarily reflect the official policy or position
of the funding agency.

References

1. Karan Aggarwal, Abram Hindle, and Eleni Stroulia. Co-evolution of project
documentation and popularity within github. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, pages 360–363, New
York, NY, USA, 2014. ACM.

2. Anahita Alipour, Abram Hindle, and Eleni Stroulia. A contextual approach to-
wards more accurate duplicate bug report detection. In Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR ’13, pages 183–192,
Piscataway, NJ, USA, 2013. IEEE Press.

3. Jeff Anderson, Saeed Salem, and Hyunsook Do. Improving the effectiveness of
test suite through mining historical data. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, pages 142–151, New
York, NY, USA, 2014. ACM.

4. Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. Mining questions asked
by web developers. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 112–121, New York, NY, USA, 2014.
ACM.

5. Boris Baldassari and Philippe Preux. Understanding software evolution: The
maisqual ant data set. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 424–427, New York, NY, USA, 2014.
ACM.



6. Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. Modern
code reviews in open-source projects: Which problems do they fix? In Proceedings
of the 11th Working Conference on Mining Software Repositories, MSR 2014,
pages 202–211, New York, NY, USA, 2014. ACM.

7. Jennifer Bevan, E. James Whitehead, Jr., Sunghun Kim, and Michael Godfrey. Fa-
cilitating software evolution research with kenyon. In Proceedings of the 10th Eu-
ropean Software Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ESEC/FSE-
13, pages 177–186, New York, NY, USA, 2005. ACM.

8. Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bernstein,
Vladimir Filkov, and Premkumar Devanbu. Fair and balanced?: Bias in bug-fix
datasets. In Proceedings of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ESEC/FSE ’09, pages 121–130, New York, NY, USA,
2009. ACM.

9. Remco Bloemen, Chintan Amrit, Stefan Kuhlmann, and Gonzalo Ordóñez Mata-
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100. Gregorio Robles, Jesús M. González-Barahona, Carlos Cervigón, Andrea
Capiluppi, and Daniel Izquierdo-Cortázar. Estimating development effort in
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