
DIETs: Recommender Systems
for Mobile API Developers

Stefanie Beyer
University of Klagenfurt, Austria

Email: stefanie.beyer@aau.at
http://serg.aau.at/bin/view/StefanieBeyer/WebHome

Abstract—The increasing number of posts related to mobile
app development indicates unaddressed problems in the usage
of mobile APIs. Arguing that these problems result from in-
adequate documentation and shortcomings in the design and
implementation of the APIs, the goal of this research is to develop
and evaluate two developers’ issues elimination tools (DIETs)
for mobile API developers to diminish the problems of mobile
applications (apps) development.

After categorizing the problems, we investigate their causes,
by exploring the relationships between the topics and trends of
posts on Stack Overflow, the app developers’ experience, the API
and test code, and its changes. The results of these studies will
be used to develop two DIETs that support API developers to
improve the documentation, design, and implementation of their
APIs.

I. INTRODUCTION

The goal of mobile apps is to fit best the users’ needs to
read the newspaper or emails, to entertain the user or chat
with friends on mobile devices. Many companies and also
private developers spend time and money to build their own
mobile apps. The most popular mobile operating systems are
iOS, Windows Phone, and Android. Among these, Android is
the most widespread mobile operating system and it is free
and open source. The success of a mobile app depends on
the quality of the APIs used by this app. Lineares-Vasquez et
al. [12] found that the less fault-prone an API is, the more
successful are the apps that use this API. There is a lot of
documentation, how to develop mobile apps and use the APIs.
However, developers often have problems and questions con-
cerning the implementation of mobile apps and the usage of
the APIs. The discussion of issues related to the development
of mobile apps has gained more and more popularity on Q&A-
platforms, such as Stack Overflow (SO).1 Barua et al. [4]
stated that mobile apps, in particular for Android, are among
the topics with the most increasing popularity on SO.

Given the increasing number of discussions on how to use
an API, and in particular the Android API, we argue that
the discussed problems mainly stem from inadequate docu-
mentation and shortcomings in the design and implementation
of the API. Existing approaches, such as [15] and [3], tried
to address this problem by linking source code to SO posts.
While these approaches can help developers in using an API by
providing additional documentation, the actual shortcomings

1http://stackoverflow.com/

in the documentation, design, and implementation of the API
are not addressed.

The goal of this thesis is to fill this gap by first categorizing
the problems and questions developers state on Q&A sites,
such as Stack Overflow, concerning the usage of an API, and
establish a link between them and the API implementation.
Using this link, the goal is to mitigate these shortcomings
by providing API developers with two DIETs: one to cover
shortcomings in the documentation and one to identify and
resolve shortcomings in the design and implementation of an
API.

To reach this goal, we address this problem from two
perspectives: The first one is to tackle the problems of the
developers by providing API developers support to improve
the documentation. That means, for instance, to give recom-
mendations where documentation for app developers does not
tackle frequently discussed topics. We also plan to give advice
where more detailed tutorials for problematic API components,
such as classes or methods, are needed to make understand-
ing and usage of these API components easier. The second
approach addresses the elimination of problems at the API
level. To reach this goal, we will create a recommender system
that predicts problematic components, based on heuristics of
code metrics and patterns. In our research, the main data input
sources are the posts of Stack Overflow, the API code, and its
changes over the time. The main contributions of this research
will be:

• A categorization of mobile app development issues, based
on both, qualitative and quantitative research methods.

• A study of the relationships between new releases, design
changes, code metrics, smells, and questions on SO and
a corresponding model to represent them.

• A categorization of problems faced by mobile app devel-
opers at different levels of experience.

• A DIET for API developers that addresses missing doc-
umentation and shows where more detailed examples
should be provided to tackle frequently discussed topics,
taking into account the developers’ experience.

• A DIET for API developers that identifies critical compo-
nents during development to tackle problems before the
API is released.

API developers will benefit by using our research results
to improve the documentation, design, and implementation of



their APIs. This in turn will lead to easier to use APIs which
benefit the (app) developers.

II. RESEARCH APPROACH

In this thesis, we follow a mixed methods research approach
combining quantitative and qualitative research methods [6].
As quantitative research methods we will use IR (Information
Retrieval) methods, such as VSM (Vector Space Model), fre-
quent item-set mining, or LDA (Latent Dirichlet Allocation).
We plan to apply qualitative research methods, such as Card
Sorting or Surveys with developers.

In contrast to proprietary mobile operating systems, such
as iOS or Windows Phone, the sources of Android are freely
available. Therefore, we focus in our case studies on Android.

The main input source is the data dump of Stack Overflow
posts, provided by Stack Exchange.2 This dump contains all
posts, the tags of the posts, comments, post history, badges,
votes and users. We also investigate the Android APIs and
its changes over the time to find the problems of mobile app
development. Furthermore, we consider mailing lists and An-
droid bug reports to collect information about API problems.
With this data, we plan to answer the following three research
questions (RQs).

RQ1: What are the problems of mobile app development?

Manual Investigation:

In our previous research, we applied a qualitative analysis
of 450 most viewed posts that are tagged with Android. This
set was used to build categories with Card Sorting. Each
post was categorized manually concerning its question type
and its problem type. Question types are, for instance, ’How
to. . . ?’, ’What is the problem. . . ?’, or ’Why. . . ?’. Problem
types include among others ’User Interface’, ’Core Elements’,
or ’Webkit’. The categorization was refined with three Android
app developers and evaluated with the Fleiss’ Kappa value of
inter rater agreement. The goal was to find the main issues
of Android app development discussed on SO, concerning
question types and problem types. Furthermore, we investi-
gated if there are relations between the question categories
and problem categories.

We discovered that Android app developers often face
problems by using the API components User Interface and
Core Elements. Posts related to Libs/APIs and User Interface
deal often with the question if it is possible to implement an
idea. Questioners that use the components Network, Database,
or Fragments often face errors and exceptions. Furthermore,
problems related to Webkit and ActionBar often occur on
version changes. The results of this study have been published
at the ICSME-ERA track, see Section IV, My Publications.

Automated Classification:

To get more insights into the problems over time, we
increased the set of investigated posts to 1050 posts that have
been created between 2008 and 2014.

2http://stackexchange.com

Using Apache Lucene,3 we automated the classification
of the posts. VSM is used to index the posts which then
are classified using the k-NN algorithm. We compared the
automated classification to the baseline zero classification. For
the zero classification a post is classified into the majority
category. Lucene significantly outperforms the baseline clas-
sification in predicting 41.33% of the posts correctly for the
question categories compared to 31.78% for the baseline. For
the problem categories Lucene classified 52.82% of the posts
correctly, the zero classification achieved 25.78% correctly
classified posts. However, to get reliable results, we need to
improve the classification.

As a next step, we plan to investigate how tags can be
used to find categories of mobile app development problems.
Barua et al. [4] stated that it is hard to use the tags for
the categorization, due to the variety of tags on SO. There
exists already an approach on SO to reduce tags by providing
synonyms for each tag manually. In November 2014 there
were 38907 tags on SO, but only for 2843 of these tags
exist synonyms. We plan to reduce the amount of tags by
grouping them automatically. To find tags that belong together,
we use similarity metrics, such as the Levensthein distance
or N-Gram distance and apply stemming with the Porter
stemmer or English stemmer, all provided by Apache Lucene.
To handle misspelled words, we use the Metaphone algorithm,
provided by Apache Commons4 that indexes the words by their
pronunciation. For the majority of the tags, Stack Overflow
provides a short description. To build groups of tags, we
will apply LDA on these short descriptions of the tags. To
validate our approach, we will compare our created synonyms
to the tag-synonyms5 created manually by the Stack Overflow
community.

To categorize the posts by tags, we plan to apply frequent
item set mining on the tags that are related to each post and
evaluate if they match the manually built categories. The tools
used for data mining are MALLET6 and WEKA.7 Having a
good categorization of the posts, we then plan to explore the
trends of the topics over the time, similar to [4].

RQ2: What are the reasons for the problems of mobile app
development?

Problems and App Developers:

In this step, we plan to research how problems and app
developers are related to each other. The goal is to find out if
the problems are related to the users’ experience and if experi-
enced developers mainly face the same problems. In particular,
we will investigate, how the developers’ experience influences
the questions concerning mobile app development on Stack
Overflow. Furthermore, we plan to investigate if problematic
API components lack documentation for developers with a
certain level of experience.

3http://lucene.apache.org
4http://commons.apache.org/proper/commons-codec/
5http://stackoverflow.com/tags/synonyms
6http://mallet.cs.umass.edu
7http://www.cs.waikato.ac.nz/ml/index.html



To get the developers’ experience, we will consider their
reputation on SO, consisting of up-votes of questions, up-votes
of answers, and the number of accepted answers. Furthermore,
we will also have a look at closed topics, duplicated posts,
the number of comments, and the favorite count of posts to
evaluate the importance of the posts and the experience of the
developers.

To get new insights and to evaluate our findings later on,
we plan to perform surveys with developers having different
levels of experience in developing Android apps.

Problems and APIs:

The goal of this step is to investigate if the sources of
the problems of Android app development are in the code
of the Android APIs. In particular, we plan to find out if
abnormalities and certain characteristics in API code lead to
misconceptions concerning the usage of the API components.
To reach this goal, we plan to correlate the changes in the
code and the characteristics of the code to the changes of
topics in SO posts to understand the effect of design changes
or new introduced components on problems that are discussed
on SO. For this, we will investigate code metrics, such as
coupling or lines of code, and code smells, such as feature
envy or duplicate code. We will also have a look at design
patterns, such as creational patterns or structural patterns. As
a next step, we will link the classes of Android API to the
posts that mention these classes to investigate, how the topics
concerning mobile app development evolve on SO. For this,
we plan to follow the approach of Subramanian et al. [19].

We also plan to find out if APIs that are hard and com-
plicated to test or that are covered by tests with smells cause
more problems in understanding and usage than APIs with
clean tests.

RQ3: To which extend can we reduce the problems of mobile
app development with DIETs?

Documentation-DIET:

The goal of this step is to develop a DIET to tackle
the missing documentation and find out which additional
documentation should be provided to cover often discussed
problems for each level of developers’ experience. For topics
that are covered by the documentation, we will apply a ranking
for good code examples, similar to Chatterjee et al. [5] and,
in addition, provide information for which experience level
this ranking would be useful. To evaluate our results, we plan
to perform studies with Android app developers at different
levels of experience and interview them which parts of the
documentation are not complete, which should be improved,
as well as how the additional documentation helped them. In
addition, we will evaluate this DIET with think aloud studies
and interviews with Android API developers. To measure the
accuracy of the DIET, we will calculate precision and recall.

Development-DIET

To tackle the problems of Android API developers, we will
develop a recommender system. This system should support

API developers to identify and tackle problematic components
before the API is released. We will consider heuristics about
the code changes, patterns and metrics in correlation to the
posts on SO. Problematic components are also discussed in
bug reports and mailing lists. To get additional information
about critical issues and problems, we will combine the infor-
mation collected from the previous studies with the Android
bug reports, as well as mailing lists.

We plan to evaluate the accuracy of the recommender sys-
tem by calculating precision and recall, as well as MAE (Mean
Absolute Error) of the predicted components. Furthermore,
we will apply n-fold-cross validation on the data set, that
is used for the recommendations. We will perform surveys
with API developers to investigate how the DIET supports
the developers and address questions, such as: is it easy to
use, does it recommend useful advices, is the accuracy of the
recommendations high enough? We also plan to perform think
aloud studies to see how the recommender system performs
for Android API developers.

Future Directions

The evaluation of the positive effects of the DIETs with
a long-term study is left for future work. Furthermore, the
analysis may be transferred to other mobile operating systems,
such as iOS or Windows Phone, and other APIs in general.

III. RELATED WORK

During the last years several studies on topic modeling of
Stack Overflow posts have been presented. Treude et al. [20]
presented a classification of posts into question categories,
such as ’how to’ or ’error’. They investigated which posts
are answered immediately and why, as well as who are the
questioners of the posts. Kavaler et al. [11] investigated the
dependencies between the popularity of Android APIs in apps
and how frequently they are mentioned in Stack Overflow
posts. They found that there is a relation between the internal
documentation of a class, its size, and the amount of questions
on this class on Stack Overflow. Their goal was to find
out which components are confusing and why. Although this
study is similar to our research, we differ from this study
in investigating also the code metrics and code smells of the
APIs.

Linares-Vasquez et al. [13] and Barua et al. [4] applied
LDA to identify the hot topics of mobile app development
discussed on Stack Overflow. Linares-Vasquez et al. focussed
on finding out which questions are answered and which ones
are not. Barua et al. searched for the problems faced by
developers and investigated how these topics evolved over
time. Joorabchi et al. [10] also discussed the challenges of
mobile app development by performing interviews with senior
mobile app developers.

Han et al. [9] examined bug reports in order to get topics
of vendor specific bugs of Android apps. Similar to Barua
et al. [4] they used LDA to infer topics and observed their
evolution over time. Martie et al. [14] used LDA to examine
Android bug XML logs of open source projects. They analyzed



topic trends and distribution over time and releases. Linares-
Vasquez et al. [12] found that the usage of error prone APIs
often leads to less successful Android apps. Asaduzzaman et
al. [2] related the changes on the Android platform to Android
bug reports to uncover potential risky source code entities or
issues that produce bugs. Saha et al. [17] and Stanley et al.
[18] focussed on predicting tags for posts on Stack Overflow.
Barua et al. [4] considered tags for the categorization but came
to the conclusion that user defined tags are too detailed for
their reasons.

Subramanian et al. [19] linked the code snippets of posts
on Stack Overflow to the according API classes. Rigby et al.
[16] provided ACE, a tool to extract essential code elements
of informal documentation with island parsing. They also
approached to calculate the salience of the given elements.
Furthermore, Dagenais et al. [7] and Antoniol et al. [1] linked
code in documentation and learning resources to the relevant
API classes using IR-techniques. Ponzanelli, Bacchelli, and
Lanza [15], [3] developed the tools Seahawk and Prompter.
These are Eclipse plugins that match written source code
to posts of Stack Overflow that discuss the problems with
the components in use. Ginsca and Popescu [8] applied user
profiling of Stack Overflow to get a benchmark from which
users questions and answers of good quality may be expected.
Finally, Chatterjee et al. [5] proposed SNIFF, a technique to
find Java code snippets by searching for full English text and
rank them by relevance, based on the amount of documentation
for each snippet.

Research Gap

Existing approaches to find topics and issues of mobile
app development mainly address the problems but not the
causes for the problems. Furthermore, they do not provide
recommendations or directions how to solve these problems.
The majority of these approaches rely on quantitative research
approaches using topic modeling techniques, such as LDA or
LSI, to infer topics. In contrast to these approaches, we use
the manually created benchmark as a base for the automated
classification. Furthermore, there already exist approaches that
link Stack Overflow to the API code and the trends of Android
bug reports to the changes of the Android platform. However,
the combination of the posts, bug reports, the API code, and
test code to recommend solutions is still missing.

IV. MY PUBLICATIONS

A Manual Categorization of Android App Development
Issues Using Stack Overflow Posts, S. Beyer and M. Pinzger.
In Proceedings of the International Conference on Software
Maintenance and Evolution, Early Research Achievements
(ICSME ERA), pp. 531-535, IEEE Computer Society, 2014.

REFERENCES

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo.
Recovering traceability links between code and documentation. IEEE
Transactions on Software Engineering, 28(10):970–983, October 2002.

[2] M. Asaduzzaman, M. C. Bullock, C. K. Roy, and K. A. Schneider. Bug
introducing changes: A case study with android. In Proceedings of the
Working Conference on Mining Software Repositories, pages 116–119.
IEEE, 2012.

[3] A. Bacchelli, L. Ponzanelli, and M. Lanza. Harnessing stack overflow
for the ide. In Proceedings of the International Workshop on Recom-
mendation Systems for Software Engineering, pages 26–30. IEEE, 2012.

[4] A. Barua, S. W. Thomas, and A. E. Hassan. What are developers talking
about? an analysis of topics and trends in stack overflow. Empirical
Software Engineering, 19(3):619–654, November 2012.

[5] S. Chatterjee, S. Juvekar, and K. Sen. Sniff: A search engine for
java using free-form queries. In Proceedings of the 12th International
Conference on Fundamental Approaches to Software Engineering: Held
As Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, FASE ’09, pages 385–400, Berlin, Heidelberg,
2009. Springer-Verlag.

[6] J. W. Creswell. Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches. SAGE Publications, 2013.

[7] B. Dagenais and M. P. Robillard. Recovering traceability links between
an api and its learning resources. In Proceedings of the International
Conference on Software Engineering, pages 47–57. IEEE, 2012.

[8] A. L. Ginsca and A. Popescu. User profiling for answer quality
assessment in q&a communities. In Proceedings of the Workshop on
Data-driven User Behavioral Modelling and Mining from Social Media,
pages 25–28. ACM, 2013.

[9] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia.
Understanding android fragmentation with topic analysis of vendor-
specific bugs. In Proceedings of the Working Conference on Reverse
Engineering, pages 83–92. ACM, 2012.

[10] M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real challenges in mobile
app development. In Proceedings of the International Symposium on
Empirical Software Engineering and Measurement, pages 15–24. IEEE,
2013.

[11] D. Kavaler, D. Posnett, C. Gibler, H. Chen, P. Devanbu, and V. Filkov.
Using and asking: Apis used in the android market and asked about in
stackoverflow. In Social Informatics, volume 8238 of Lecture Notes in
Computer Science, pages 405–418. Springer, 2013.

[12] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. Api change and fault proneness: A threat
to the success of android apps. In Proceedings of the Joint Meeting on
Foundations of Software Engineering, pages 477–487. ACM, 2013.

[13] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk. An exploratory anal-
ysis of mobile development issues using stack overflow. In Proceedings
of the International Workshop on Mining Software Repositories, pages
93–96. IEEE, 2013.

[14] L. Martie, V. K. Palepu, H. Sajnani, and C. Lopes. Trendy bugs:
Topic trends in the android bug reports. In Proceedings of the Working
Conference on Mining Software Repositories, pages 120–123. IEEE,
2012.

[15] L. Ponzanelli, A. Bacchelli, and M. Lanza. Seahawk: stack overflow
in the ide. In Proceedings of the International Conference on Software
Engineering, pages 1295–1298. IEEE, 2013.

[16] P. C. Rigby and M. P. Robillard. Discovering essential code elements in
informal documentation. In Proceedings of the International Conference
on Software Engineering, pages 832–841. IEEE, 2013.

[17] A. K. Saha, R. K. Saha, and K. A. Schneider. A discriminative
model approach for suggesting tags automatically for stack overflow
questions. In Proceedings of the International Workshop on Mining
Software Repositories, pages 73–76. IEEE, 2013.

[18] C. Stanley and M. D. Byrne. Predicting tags for stackoverflow posts.
In Proceedings of the International Conference on Cognitive Modeling,
2013.

[19] S. Subramanian and R. Holmes. Making sense of online code snippets.
In Proceedings of the International Workshop on Mining Software
Repositories, pages 85–88. IEEE, 2013.

[20] C. Treude, O. Barzilay, and M.-A. Storey. How do programmers ask
and answer questions on the web? (nier track). In Proceedings of
the International Conference on Software Engineering, pages 804–807.
ACM, 2011.


