
A Manual Categorization of Android App
Development Issues on Stack Overflow

Stefanie Beyer
Software Engineering Research Group

University of Klagenfurt
Klagenfurt, Austria

Email: stefanie.beyer@aau.at

Martin Pinzger
Software Engineering Research Group

University of Klagenfurt
Klagenfurt, Austria

Email: martin.pinzger@aau.at

Abstract—While many tutorials, code examples, and docu-
mentation about Android APIs exist, developers still face various
problems with the implementation of Android Apps. Many of
these issues are discussed on Q&A-sites, such as Stack Overflow.
In this paper we present a manual categorization of 450 Android
related posts of Stack Overflow concerning their question and
problem types. The idea is to find dependencies between certain
problems and question types to get better insights into issues of
Android App development. The categorization is developed using
card sorting with three experienced Android App developers. An
initial approach to automate the classification of Stack Overflow
posts using Lucene is also presented. The study highlights that
the most common question types are ’How to. . . ?’ and ’What
is the problem. . . ?’. The problems that are discussed most often
are related to ’UserInterface’ and ’Core Elements’. In particular,
the problem category ’Layout’ is often related to ’What is the
problem. . . ?’ and ’Frameworks’-issues often come with ’Is it
possible. . . ?’-questions.

I. INTRODUCTION

The discussion of issues related to the development of
mobile applications (apps) has gained more and more pop-
ularity on Q&A-platforms such as Stack Overflow.1 Barua
et al. [1] stated that Android is among the topics with the
largest increase in the number of posts on Stack Overflow.
The success of a mobile application depends on the quality of
the application. Lineares-Vasquez et al. [5] found that there is
a dependency between the quality of an API and the success of
the mobile app that uses this API. The APIs used by successful
apps use less fault-prone APIs than those used by unsuccessful
apps.

Although there are many tutorials, a lot of documentation
and several examples on how to develop mobile applications,
developers often have problems and questions concerning
their implementation. The goal of this research is to give
recommendations to developers to improve the quality of
mobile applications and to minimize the amount of problems
during development. As a first step in this research, we need
to find out what the main problems and topics of Android app
developers are.

We manually investigated 450 Android related posts of
Stack Overflow to get information about the main issues of
Android development. In particular, we used Card Sorting to
categorize posts concerning the issues stated in the post and

1http://stackoverflow.com/

the kind of question that is asked. We refined the categories
iteratively and evaluated them with three experienced Android
app developers. We then manually analyzed the categories and
posts to answer the following two research questions:

RQ1 What are the main issues discussed on Stack Overflow
concerning mobile app development for Android OS?
◦ What kind of questions are asked?
◦ What problems are discussed?

RQ2 What are the relations between question categories
and problem categories?

Furthermore, we used the classified posts to train a model
with Apache Lucene’s implementation of kNN (k-nearest-
neighbours)-algorithm in order to perform this classification
automatically. With this, we seek to answer our third research
question:

RQ3 To which extent can we automate the classification of
Stack Overflow posts with Apache Lucene?

In this paper, we make the following contributions:

• A qualitative evaluation of Android development is-
sues concerning the main problem and question cate-
gories.

• An evaluation of the dependencies between the prob-
lems and question categories of posts.

• A manually created benchmark for Android-related
post classification.

• An initial evaluation of Apache Lucene’s kNN algo-
rithm to automate the classification.

The remainder of this paper is organized as follows. In
Section III we describe the extraction and manual categoriza-
tion of posts. Furthermore, we present the answers to the
research questions RQ1 and RQ2. Section IV presents the
automated classification with Apache Lucene and answer to
research question RQ3. Threats to validity are discussed in
Section V. We present conclusions and directions for future
work in Section VI.

II. RELATED WORK

During the last years several studies on topic modeling
of Stack Overflow posts have been presented. The three
approaches closest to this study are from Linares-Vasquez et

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.88

532

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.88

531

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.88

531

al. [6], Barua et al. [1], and Treude et al. [9]. Linares-Vasquez
et al. [6] applied LDA (Latent Dirichlet Allocation) to identify
the hot topics of mobile app development discussed on Stack
Overflow. They focussed on finding out which questions are
answered and which ones are not. Barua et al. [1] had a closer
look at the topics that are discussed on Stack Overflow posts to
get more insights into the problems faced by developers. They
used MALLET’s implementation of LDA to infer topics from
posts and investigated how these topics evolved over time. In
[9], Treude et al. presented a classification of Stack Overflow
posts into question categories, such as ’how to’ or ’error’. They
focused on investigating the research questions which posts
are answered immediately and why, as well as who are the
questioners.

Further approaches to get insights into issues of Android
app development are presented in [3] and [7]. Han et al. [3]
examined bug reports in order to get topics of vendor specific
bugs of Android apps. Similar to Barua et al. [1] they used
LDA to infer topics and observed their evolution over time.
Martie et al. [7] used LDA to examine Android bug XML
logs of open source projects. They analyzed topic trends and
distribution over time and releases.

Similar to our approach, Guzzi et al. [2] applied Card
Sorting for the categorization of posts on mailing lists. They
evaluated their categories with Closed Card Sorting and cal-
culated the Fleiss’Kappa-value to get inter-rater agreement.
Other approaches such as [4] of Joorabchi et al. also discuss
the challenges of mobile app development.

In this research, we also analyze Stack Overflow posts.
However, we focus on posts related to Android app devel-
opment. For the categorization of the posts we use card
sorting instead of automated approaches, such as LDA. We
furthermore differ from related studies in investigating the
dependencies between question and problem categories to get
better insights into the issues of Android app development.

III. MANUAL CATEGORIZATION

In the following we report how we extracted the data from
the Stack Exchange website and which data we selected for
the categorization. Furthermore, the categorization of the posts
into question types and problem types is presented. Figure 2
shows an overview of the study’s design.

Data Extraction: We examined 550 of 130764 Stack
Overflow posts that are related to Android to get insights into
questions and problems of Android app development. The data
for examination are provided by the Stack Exchange website.2
We chose the posts of Stack Overflow since these posts focus
on app development. Stack Overflow has also been used in
previous studies, such as [6], [1], and [9].

At first we downloaded the Stack Overflow’s data dump in
XML format from November 2013. Posts are stored in the file
Posts.xml that we imported into a MySQL database. We
used the fields Id, Body, Title and Tags for the study.
To get rid of unimportant information we filtered HTML-
specific tags during import. The next step was to select Android
related posts, meaning posts that are tagged with <android>.
Only question-posts are used. We also filtered posts that are

2http://data.stackexchange.com

!"

#$%&%

'()*+$,*-

./'012,3%0-

!454/6758495:;<

4=5;>456!/
9?4@@:A:945:;<

B

C
DECDED

>

> 4
4

?F10)0G%
///H<<

>4<=4?/9456I;8:J45:;<

#$%&%EKL2

!
!!!!!!!!

80M,)0L0)&

N

Fig. 1: Study design: The numbers in the blue circles refer
to the research questions. The question mark represents the
question categories, the error-mark represents the problem
categories.

tagged with <eclipse> since they refer to issues with the
IDE. Since we wanted information about the last hot topics
of Android app development, we selected posts with Id >
9000000, meaning posts created after January 2012. From
this set of posts, we finally selected the 550 most viewed posts.
Not all of the posts are related to Android development. They
also concerned hardware issues or environment specific topics
as well. Therefore, we only selected posts that deal with the
implementation of Android apps, resulting in 450 posts.

Categorization: We applied Card Sorting to build cate-
gories of problems and questions. Card Sorting is used to
structure information and evaluate categories [8]. Each post
is categorized two times: first concerning the question type,
second concerning the component that causes the problem.

To build the problem categories, we investigated which
class or method of the API causes the problem. If there has
already been a category with this class or method, the post was
assigned to this category. Otherwise, a new category named
after the component (API method or class) has been created.
If there were only a few posts in a category, we combined
related categories to one bigger category. Categories, named
after methods of one class were combined to a category named
after the class. Classes of the same Android API package were
also combined to a category, named after this package. If the
amount of posts in a category was very high compared to other
categories, the category was split.

We present below how to distinguish between the question
categories to get more insights into the reasons of the prob-
lems:

533532532

− Posts of the category How to . . . ? describe issues
where the questioner does not know how to implement
it. The questioner often asks how to integrate a given
solution into her own code or asks for examples.

− Posts of the category What is the problem . . . ? deal
with problems where the questioner has an idea how to
solve it, but was not able to implement it correctly. The
posts often contain How to. . . ? questions, for which
there is no working solution.

− Posts of the category Error. . . ? describe the occur-
rence of errors, exceptions, crashes or even compiler
errors. All posts in this category contain a stack trace,
error message, or warning.

− Posts of the category Is it possible. . . ? contain ques-
tions to get more information about the possibilities
and limitations of Android apps or several APIs.

− Posts of the category Why. . . ? focus on obtaining
background information on a component or life cycle.
The questioner asks for explanation and understand-
ing.

− Posts of the category Better Solution. . . ? contain ques-
tions for better solutions or best practice solutions.
Typically, the questioner already has an unsatisfactory
solution for the problem.

− Posts of the category Version . . . ? deal with problems
that occur when changing the API level. Furthermore,
this category contains posts that deal with the com-
patibility of API versions.

− Posts of the category Device. . . ? deal with problems
that occur exclusively on specific devices. For in-
stance, the settings and API level are the same for two
devices but the problem occurs only on one device.

Since a post can contain multiple questions we applied the
following rules for the categorization:

1) The first question is taken for the categorization.
2) If there are more versions of the question, or an

’evolution’ of the question, the question of the first
version is considered for categorization.

3) Version. . . ? comes before Device. . . ?
4) Version. . . ? and Device. . . ? come before How to. . . ?

or What is the problem. . . ?
5) Is it possible . . . ? comes before How to. . . ?

We developed the categories in an iterative manner, as
shown by the Refinement step in Figure 2. The result of
the initial categorization was evaluated by one experienced
Android developer using 35 posts selected randomly from the
450 posts. Regarding the question categories, she agreed for
12 out of the 35 posts. Regarding the problem categories the
agreement was 9 out of 35. Based on her feedback we refined
and refactored the categories. In particular, we added super
categories for related fine grained problems, that we call main
problem categories.

To verify the refined categories we applied Closed Card
Sorting with three Android developers (ADs). Each has 2
or more years of experience in developing Android apps.
Each developer classified 35 posts into question and problem
categories. The sample of 35 posts from different problem
categories was randomly chosen from the set of 450 posts. We

TABLE I: Question Categories

Question Category Posts Percentage
How to . . . ? 143 31.78%
What is the problem . . . ? 126 28.00%
Error . . . ? 54 12.00%
Is it possible . . . ? 46 10.22%
Why. . . ? 27 6.00%
Better Solution . . . ? 24 5.33%
Version . . . ? 24 5.33%
Device. . . ? 6 1.33%

gave each developer a written description of the categories and
how to distinguish them.

We compared the classification of the posts of the test
persons with ours. Then we reviewed the posts where no
AD agreed with our classification. Furthermore, we reviewed
posts that all three ADs assigned the same category but which
was different to ours. These categories were Layout, Gestures,
EventHandling and Intent. The developers reported that they
had difficulties to differ between the question categories Better
Solution and Why. . . ?, and to distinguish between the problem
categories Layout, Form Widgets, and Composite.

After the last refinement, the three ADs classified on
average 72% of the posts according to our question categories.
Regarding the main problem categories the agreement was on
average 79%. Regarding the problem categories the agreement
was on average 70%. We also calculated Fleiss’ Kappa to
measure the inter-rater agreement. For the question categories
we got κqc = 0.60 (i.e., moderate agreement), for the main
problem categories we achieved κmp−c = 0.71 (i.e., substan-
tial agreement) and for the problem categories Fleiss’ Kappa
value was κfgp−c = 0.66 (i.e., substantial agreement).

The final categorization resulted in 8 question categories,
15 main problem categories, and 45 problem categories. The
CSV-file containing the posts and categories is provided on our
website.3 In the following we discuss the results and present
the answers to the research questions RQ1 (i.e., RQ1.1 and
RQ1.2) and RQ2.

RQ1.1 What kind of questions are asked?

The details of posts per question category are presented in
Table I. The table shows that the most frequent type of question
was How to . . . ? (31.78%). This corresponds to the results of
Treude et al. [9]. This category is followed by questions about
What is the Problem . . . ? (28.00%) and Error . . . ? (12.00%).

We conclude that the main part of the questions is about
the usage of components (How to. . . ?) or how to interpret
and deal with problems and errors (What is the Problem. . . ?,
Error. . . ?). Other question categories are Is it possible. . . ?,
Why. . . ?, Better Solution. . . ?, Version. . . ?, and Device. . . ?.

RQ1.2 What problems are discussed?

Table II shows the most frequent categories of problems
discussed in posts on Stack Overflow. These are related to User
Interface issues (25.78%) followed by posts of the categories
Core Elements (12.44%) and Libs/APIs (11.78%).

3http://serg.aau.at/pub/StefanieBeyer/Research/posts and categories.csv

534533533

TABLE II: Main Problem Categories

Main Problem Category Posts Percentage
User Interface 116 25.78%
Core Elements 56 12.44%
Libs/APIs 53 11.78%
Android System 33 7.33%
Input 32 7.11%
Webkit 25 5.56%
Media 24 5.33%
Database 23 5.11%
Networking 23 5.11%
Other (Graphics, OS, Security, Threading, . . .) 65 14.44%

From these results we conclude that many problems that
arise during Android app development are User Interface re-
lated. The issues of the category Core Elements which includes
the core elements of an Android app cause problems, too.
Questions about Libs/APIs are also discussed frequently. Fewer
questions are related to the problems of components of Android
Systems, Input, Webkit, Media, Database, and Networking.

RQ2 What are the relations between question categories and
problem categories?

Table III shows the relations between question categories
and main problem categories and important problem cate-
gories.

According to the results of research question RQ1.1, posts
are most often related to the question categories How to. . . ?
and What is the problem. . . ?. These question categories are
strongly related to the main problem categories User Interface,
Core Elements, Libs/APIs, Android System, Input, Webkit,
Media, Database, and Networking. The problem categories
Layout, Form Widget, Composite, Frameworks, Emulator, and
Gestures confirm this conclusion. We conclude that there
are problems with the implementation and usage of these
components.

Questions of the category Error. . . ? are connected to the
components of the main problem categories Network and
Database. Furthermore, the problem category Fragments is
related to the question category Error. . . ?. The relation of
the problem category Fragments to the question category
Why. . . ? indicates that developers ask for more explanation
and understanding of this component. Developers do not have
a full understanding of the components of the category Core
Elements. They ask for better ways and reasons. Furthermore,
problems depending on the API version occur at application
components.

Questions, such as Is it possible. . . ? are related to the main
problem category Libs/APIs and problem category Layout. The
study highlights that developers often ask which Frameworks
they should choose and if it is possible to implement their
ideas with certain APIs. Developers want to know more about
the possibilities to design the Layout components of Android.

The relation between Webkit and Version. . . ? indicates that
there are troubles with new versions of the Android API.
Version changes are also the reason for troubles of the problem
category ActionBar.

IV. CLASSIFICATION WITH APACHE LUCENE

The next step was to investigate automated classification of
posts into the different question and problem categories using

TABLE III: Dependencies between Problems and Questions
Categories

Category H
ow

to
..

.?

W
ha

t
is

th
e

Pr
ob

le
m

..
.?

Er
ro

r.
..

?

Is
it

po
ss

ib
le

..
.?

W
hy

..
.?

Be
tte

r
So

lu
tio

n.
..

?

Ve
rs

io
n.

..
?

D
ev

ic
e.

..
?

Po
st

s
/P

C

User Interface 49 36 4 16 3 5 3 - 116
-Layout 24 11 2 13 2 2 2 - 56
-Form Widget 8 11 1 - - - 1 - 21
-Composite 6 4 - 1 - - - - 11

Core Elements 10 13 11 2 7 5 8 - 56
-Fragments 3 4 6 1 5 3 1 - 23
-ActionBar 2 - 1 - - 1 7 - 11

Libs/APIs 15 9 8 16 3 2 - - 53
-Frameworks 12 8 5 13 2 2 - - 42

Android System 11 8 6 4 2 1 - 1 33
-Emulator 7 5 1 3 - 1 - - 17

Input 11 11 3 - 4 - 1 2 32
-Gestures 3 7 - - - - 1 1 12

Webkit 5 9 1 1 1 2 6 - 25
Media 9 6 4 1 - 1 1 2 24
Database 6 6 5 - 1 3 2 - 23
Networking 6 7 5 2 - 3 - - 23
Other 13 17 6 3 6 0 1 - 46
Posts / QC 143 126 54 46 27 24 24 6 450

Apache Lucene,4 an open-source search library.

We first preprocessed the text by running the Porter stem-
ming algorithm to cut off common word suffixes. We applied
EnglishPossessiveFilter to remove possessives from
words and ASCIIFoldingFilter to special characters
that are not in the ASCII range to the most similar ASCII
characters. We converted the text to lower case and used
StopFilter to remove English stopwords.

For the classification we used Apache Lucene’s imple-
mentation of the k-nearest-neighbours algorithm.We applied
10-fold-cross validation to ensure to get valid results. The
sample of 450 posts is randomly partitioned into 10 equal
sized subsamples. 9 subsamples are used for training the
classifier and the remaining subsample is used for testing. The
classification is performed 10 times each time with a different
subsample as test-set. The average precision of the ten runs of
the classification of question category, main-problem category
and problem category is taken for the evaluation.

We repeated this experiment 45 times with k increasing
from 1 to 45. The results show that k = 41 fits best for the
classification of posts concerning the question categories. For
the classification of posts into the main-problem categories
k = 18 achieves the best results. For problem categorization
the setting k = 26 obtains the best results. In the following
we discuss these results and answer research question RQ3.

RQ3 To which extent can we automate the classification of
Stack Overflow posts with Apache Lucene?

Figure 2 shows the results obtained by using Apache
Lucene’s kNN for classifying posts into our question, main
problem, and problem categories. It furthermore compares the

4http://lucene.apache.org

535534534

!"!!#$

%!"!!#$

&!"!!#$

'!"!!#$

(!"!!#$

)!"!!#$

*!"!!#$

+,-.$/012345$ /012345$ 674891.$

!"
#$
%&%
'(

)

*+,#-'"%#&)

:,843-.4$

;7<4.4$

Fig. 2: Precision of the classification of posts into main prob-
lem, problem, and question categories using Apache Lucene’s
kNN and Zero classification.

results with the baseline obtained by Zero classification that
assigns each post to the majority category.

Regarding the main problem categories, 52.82% of the
posts are classified correctly by Apache Lucene’s kNN using
k = 18. Compared with the baseline of 25.78% obtained with
Zero classification, meaning a post belongs to the majority
category User Interface, this is an improvement in precision
of 27.04%. Using Apache Lucene for the classification of
posts into our problem categories setting k = 26, 39.55% of
the posts are classified correctly. Compared to the baseline
of 12.44% obtained by classifying posts to the major cate-
gory Layout, the precision is improved by 27.11%. Applying
Apache Lucene’s kNN with setting k = 41 for classifying
posts into our question categories, 41.33% of the posts are
classified correctly. Compared to the baseline of 31.78%,
meaning assigning each post to the major category How to. . . ?,
this is an improvement of 9.55%.

Answering RQ3, the results show that Apache Lucene’s
kNN algorithm significantly outperforms the baseline for clas-
sifying Stack Overflow posts into the different main problem
and problem categories. Also regarding the classification of
posts into our question categories a moderate improvement was
achieved with Apache Lucene. However, the results also show
that the majority of posts are classified incorrectly, leaving
room for improvements that we will investigate in our future
work.

V. THREATS TO VALIDITY

Threats to internal validity mainly concern the manual
categorization of 450 Stack Overflow posts. To diminish this
threat, we iteratively refined and evaluated the categories with
three experienced Android app developers. Concerning threats
to external validity, we based our study on the 450 top most
viewed posts out of more than 130 000 Android related
posts. It is possible that we might not cover all problems and
questions categories. Furthermore, the results of this study are
Android specific, therefore might not be applicable to other
mobile platforms, such as Apple’s iOS. We plan to address
these threats in future work by extending our analysis to more
posts and other platforms.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated 450 Android related Stack
Overflow posts to get insights into the issues of Android
app development. We used Card Sorting on the 450 posts
to form categories concerning the types of questions and
problems discussed in these posts. We iteratively evaluated and
refined our categorization with three experienced Android app
developers.

Analyzing the questions and problems we found that de-
velopers mainly have problems with the usage of API compo-
nents, such as User Interface and Core Elements. Developers
also ask if the realization of their ideas is possible with
Libs/APIs and User Interface components. Errors are often
mentioned in questions related to Network, Database, and
Fragments. Furthermore, version changes cause problems in
the components Webkit and ActionBar. Based on our catego-
rization we then investigated to which extent the classification
of posts can be automated with Apache Lucene’s kNN algo-
rithm. While the classification obtained with Lucene signifi-
cantly outperformed the baseline, it needs to be improved.

In future work we first will expand this study by an
investigation of more Android related posts on Stack Overflow.
We also will compare our manual categorization with catego-
rizations obtained through IR-techniques, such as LDA and
LSI (Latent Semantic Indexing). We will use these techniques
to also improve the automated classification of posts. Based on
the categorization, we then plan to investigate the evolution of
questions and problems discussed on Stack Overflow.

REFERENCES

[1] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. What are
developers talking about? an analysis of topics and trends in stack
overflow. Empirical Software Engineering, 19(3):1–36, 2012.

[2] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, and
Arie van Deursen. Communication in open source software development
mailing lists. In Proceedings of the International Workshop on Mining
Software Repositories, pages 277–286. IEEE, 2013.

[3] Dan Han, Chenlei Zhang, Xiaochao Fan, Abram Hindle, Kenny Wong,
and Eleni Stroulia. Understanding android fragmentation with topic anal-
ysis of vendor-specific bugs. In Proceedings of the Working Conference
on Reverse Engineering, pages 83–92, Oct 2012.

[4] Mona E. Joorabchi, Ali Mesbah, and Philippe Kruchten. Real challenges
in mobile app development. In International Symposium on Empirical
Software Engineering and Measurement, pages 15–24. ACM/IEEE, 2013.

[5] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Mas-
similiano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. Api change
and fault proneness: A threat to the success of android apps. In Pro-
ceedings of the Joint Meeting on Foundations of Software Engineering,
pages 477–487. ACM, 2013.

[6] Mario Linares-Vásquez, Bogdan Dit, and Denys Poshyvanyk. An
exploratory analysis of mobile development issues using stack overflow.
In Proceedings of the 10th Working Conference on Mining Software
Repositories, pages 93–96. IEEE Press, 2013.

[7] Lee Martie, Vijay K. Palepu, Hitesh Sajnani, and Cristina Lopes. Trendy
bugs: Topic trends in the android bug reports. In Proceedings of the
Working Conference on Mining Software Repositories, pages 120–123.
IEEE, 2012.

[8] Bella Martin, Bruce Hanington, and Bruce M. Hanington. Universal
Methods of Design: 100 Ways to Research Complex Problems, Develop
Innovative Ideas, and Design Effective Solutions. Rockport, 2012.

[9] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. How do
programmers ask and answer questions on the web? (nier track). In
Proceedings of the International Conference on Software Engineering,
pages 804–807. ACM, 2011.

536535535

